Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(10): 107788, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37817940

ABSTRACT

Metasurface-based color splitters are emerging as next-generation optical components for image sensors, replacing classical color filters and microlens arrays. In this work, we report how the design parameters such as the device dimensions and refractive indices of the dielectrics affect the optical efficiency of the color splitters. Also, we report how the design grid resolution parameters affect the optical efficiency and discover that the fabrication of a color splitter is possible even in legacy fabrication facilities with low structure resolutions.

2.
Opt Express ; 31(12): 20410-20423, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37381436

ABSTRACT

Increasing the light extraction efficiency has been widely studied for highly efficient organic light-emitting diodes (OLEDs). Among many light-extraction approaches proposed so far, adding a corrugation layer has been considered a promising solution for its simplicity and high effectiveness. While the working principle of periodically corrugated OLEDs can be qualitatively explained by the diffraction theory, dipolar emission inside the OLED structure makes its quantitative analysis challenging, making one rely on finite-element electromagnetic simulations that could require huge computing resources. Here, we demonstrate a new simulation method, named the diffraction matrix method (DMM), that can accurately predict the optical characteristics of periodically corrugated OLEDs while achieving calculation speed that is a few orders of magnitude faster. Our method decomposes the light emitted by a dipolar emitter into plane waves with different wavevectors and tracks the diffraction behavior of waves using diffraction matrices. Calculated optical parameters show a quantitative agreement with those predicted by finite-difference time-domain (FDTD) method. Furthermore, the developed method possesses a unique advantage over the conventional approaches that it naturally evaluates the wavevector-dependent power dissipation of a dipole and is thus capable of identifying the loss channels inside OLEDs in a quantitative manner.

SELECTION OF CITATIONS
SEARCH DETAIL
...