Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Elife ; 112022 07 18.
Article in English | MEDLINE | ID: mdl-35848798

ABSTRACT

Expression of the AR splice variant, androgen receptor variant 7 (AR-V7), in prostate cancer is correlated with poor patient survival and resistance to AR targeted therapies and taxanes. Currently, there is no specific inhibitor of AR-V7, while the molecular mechanisms regulating its biological function are not well elucidated. Here, we report that AR-V7 has unique biological features that functionally differentiate it from canonical AR-fl or from the second most prevalent variant, AR-v567. First, AR-V7 exhibits fast nuclear import kinetics via a pathway distinct from the nuclear localization signal dependent importin-α/ß pathway used by AR-fl and AR-v567. We also show that the dimerization box domain, known to mediate AR dimerization and transactivation, is required for AR-V7 nuclear import but not for AR-fl. Once in the nucleus, AR-V7 is transcriptionally active, yet exhibits unusually high intranuclear mobility and transient chromatin interactions, unlike the stable chromatin association of liganded AR-fl. The high intranuclear mobility of AR-V7 together with its high transcriptional output, suggest a Hit-and-Run mode of transcription. Our findings reveal unique mechanisms regulating AR-V7 activity, offering the opportunity to develop selective therapeutic interventions.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Active Transport, Cell Nucleus , Cell Line, Tumor , Chromatin , Humans , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Protein Isoforms/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
2.
Commun Biol ; 4(1): 785, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168263

ABSTRACT

Quantitation of androgen receptor variant (AR-V) expression in circulating tumor cells (CTCs) from patients with metastatic castration-resistant prostate cancer (mCRPC) has great potential for treatment customization. However, the absence of a uniform CTC isolation platform and consensus on an analytical assay has prevented the incorporation of these measurements in routine clinical practice. Here, we present a single-CTC sensitive digital droplet PCR (ddPCR) assay for the quantitation of the two most common AR-Vs, AR-V7, and AR-v567es, using antigen agnostic CTC enrichment. In a cohort of 29 mCRPC patients, we identify AR-V7 in 66% and AR-v567es in 52% of patients. These results are corroborated using another gene expression platform (NanoStringTM) and by analysis of RNA-Seq data from patients with mCRPC (SU2C- PCF Dream Team). We next quantify AR-V expression in matching EpCAM-positive vs EpCAM-negative CTCs, as EpCAM-based CTC enrichment is commonly used. We identify lower AR-V prevalence in the EpCAM-positive fraction, suggesting that EpCAM-based CTC enrichment likely underestimates AR-V prevalence. Lastly, using single CTC analysis we identify enrichment for AR-v567es in patients with neuroendocrine prostate cancer (NEPC) indicating that AR-v567es may be involved in lineage plasticity, which warrants further mechanistic interrogation.


Subject(s)
Neoplastic Cells, Circulating/chemistry , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics , Cell Line, Tumor , Humans , Male , Neoplasm Staging , Prostatic Neoplasms/chemistry , RNA-Seq , Receptors, Androgen/analysis , Receptors, Androgen/physiology
3.
Clin Cancer Res ; 25(6): 1880-1888, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30301829

ABSTRACT

PURPOSE: Biomarkers aiding treatment optimization in metastatic castration-resistant prostate cancer (mCRPC) are scarce. The presence or absence of androgen receptor (AR) splice variants, AR-V7 and ARv567es, in mCRPC patient circulating tumor cells (CTC) may be associated with taxane treatment outcomes.Experimental Design: A novel digital droplet PCR (ddPCR) assay assessed AR-splice variant expression in CTCs from patients receiving docetaxel or cabazitaxel in TAXYNERGY (NCT01718353). Patient outcomes were examined according to AR-splice variant expression, including prostate-specific antigen (PSA)50 response and progression-free survival (PFS). RESULTS: Of the 54 evaluable patients, 36 (67%) were AR-V7+, 42 (78%) were ARv567es+, 29 (54%) were double positive, and 5 (9%) were double negative. PSA50 response rates at any time were numerically higher for AR-V7- versus AR-V7+ (78% vs. 58%; P = 0.23) and for ARv567es- versus ARv567es+ (92% vs. 57%; P = 0.04) patients. When AR-V mRNA status was correlated with change in nuclear AR from cycle 1 day 1 to day 8 (n = 24), AR-V7+ patients (n = 16) had a 0.4% decrease versus a 12.9% and 26.7% decrease in AR-V7-/ARv567es- (n = 3) and AR-V7-/ARv567es+ (n = 5) patients, respectively, suggesting a dominant role for AR-V7 over ARv567es. Median PFS was 12.02 versus 8.48 months for AR-V7- versus AR-V7+ (HR = 0.38; P = 0.01), and 12.71 versus 7.29 months for ARv567es- versus ARv567es+ (HR = 0.37; P = 0.02). For AR-V7+, AR-V7-/ARv567es+, and AR-V7-/ARv567es- patients, median PFS was 8.48, 11.17, and 16.62 months, respectively (P = 0.0013 for trend). CONCLUSIONS: Although detection of both CTC-specific AR-V7 and ARv567es by ddPCR influenced taxane outcomes, AR-V7 primarily mediated the prognostic impact. The absence of both variants was associated with the best response and PFS with taxane treatment.See related commentary by Dehm et al., p. 1696.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Biomarkers, Tumor/genetics , Drug Resistance, Neoplasm/genetics , Neoplastic Cells, Circulating/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/genetics , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/metabolism , Docetaxel/pharmacology , Docetaxel/therapeutic use , Humans , Kallikreins/blood , Male , Middle Aged , Prednisone/pharmacology , Prednisone/therapeutic use , Progression-Free Survival , Prostate-Specific Antigen/blood , Prostatic Neoplasms, Castration-Resistant/blood , Prostatic Neoplasms, Castration-Resistant/mortality , Prostatic Neoplasms, Castration-Resistant/pathology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Androgen/metabolism , Taxoids/pharmacology , Taxoids/therapeutic use , Treatment Outcome
4.
Cancer Res ; 74(14): 3695-706, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24830722

ABSTRACT

Tumor cells must overcome apoptosis to survive throughout metastatic dissemination and distal organ colonization. Here, we show in the Polyoma Middle T mammary tumor model that N-cadherin (Cdh2) expression causes Slug (Snai2) upregulation, which in turn promotes carcinoma cell survival. Slug was dramatically upregulated in metastases relative to primary tumors. Consistent with a role in metastasis, Slug knockdown in carcinoma cells suppressed lung colonization by decreasing cell survival at metastatic sites, but had no effect on tumor cell invasion or extravasation. In support of this idea, Slug inhibition by shRNA sensitized tumor cells to apoptosis by DNA damage, resulting in caspase-3 and PARP cleavage. The prosurvival effect of Slug was found to be caused by direct repression of the proapoptotic gene, Puma (Bbc3), by Slug. Consistent with a pivotal role for a Slug-Puma axis in metastasis, inhibition of Puma by RNA interference in Slug-knockdown cells rescued lung colonization, whereas Puma overexpression in control tumor cells suppressed lung metastasis. The survival function of the Slug-Puma axis was confirmed in human breast cancer cells, where Slug knockdown increased Puma expression and inhibited lung colonization. This study demonstrates a pivotal role for Slug in carcinoma cell survival, implying that disruption of the Slug-Puma axis may impinge on the survival of metastatic cells.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Apoptosis/genetics , Neoplasms/genetics , Neoplasms/pathology , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Animals , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Survival/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Lung Neoplasms/secondary , Neoplasm Metastasis , RNA Interference , Receptors, Fibroblast Growth Factor/metabolism , Snail Family Transcription Factors , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism
5.
J Cancer Prev ; 18(2): 169-76, 2013 Jun.
Article in English | MEDLINE | ID: mdl-25337543

ABSTRACT

BACKGROUND: Urushiols are mixtures of olefinic catechols which is isolated from the sap of Korean lacquer tree (Rhus vernicifera Stokes). The aim of this study was to determine the anticancer effects of urushiol in human gastric adenocarcinoma cell lines. METHODS: The cytotoxicity of urushiols was assessed by MTT assays on the two gastric adenocarcinoma cell lines, MKN-45 (wild type of p53) and MKN-28 (mutant type of p53). We also examined the action mechanisms of urushiol by analyzing its effects on cell cycle progression and apoptosis induction. RESULTS: The cytotoxic results from MTT assays indicated that urushiol inhibited human gastric cancer cell growth in a dose-dependent manner, with IC50 values of approximately 15 and 20 µg/ml on MKN-45 and MKN-28 cells, respectively. Urushiol mediated cell death on these two cancer cell lines through different pathways. Urushiol induced apoptosis on MKN-45 cells, concomitant with apoptotic nuclear change, DNA fragmentation, poly (ADP-ribose) polymerase cleavage and apoptotic body formation via extrinsic pathway of apoptosis. However, no apoptotic features were induced by urushiol treatment on MKN-28 cells. Urushiol induced cytostatic cell growth inhibition via upregulation of the cyclin-dependent kinase inhibitors, p21 (WAF1/CIP1) and p27 (KIP1) proteins and down-regulation of cyclin-dependent kinase 2 and 4 proteins in a p53-independent manner. CONCLUSIONS: These data provide evidence that urushiol has the potential to be used as a chemotherapeutic agent in human gastric cancer.

6.
Biochim Biophys Acta ; 1803(11): 1287-97, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20620173

ABSTRACT

Membrane type 1 (MT1)-matrix metalloproteinase (MT1-MMP) is a membrane-tethered MMP that has been shown to play a key role in promoting cancer cell invasion. MT1-MMP is highly expressed in bone metastasis of prostate cancer (PC) patients and promotes intraosseous tumor growth of PC cells in mice. The majority of metastatic prostate cancers harbor loss-of-function mutations or deletions of the tumor suppressor PTEN (phosphatase and tensin homologue deleted on chromosome ten). However, the role of PTEN inactivation in MT1-MMP expression in PC cells has not been examined. In this study, prostate epithelial cell lines derived from mice that are either heterozygous (PTEN(+/-)) or homozygous (PTEN(-/-)) for PTEN deletion or harboring a wild-type PTEN (PTEN(+/+)) were used to investigate the expression of MT1-MMP. We found that biallelic loss of PTEN is associated with posttranslational regulation of MT1-MMP protein in mouse PC cells. PTEN(-/-) PC cells display higher levels of MT1-MMP at the cell surface when compared to PTEN(+/+) and PTEN(+/-) cells and consequently exhibited enhanced migratory and collagen-invasive activities. MT1-MMP displayed by PTEN(-/-) cells is differentially O-glycosylated and exhibits a slow rate of turnover. MT1-MMP expression in PTEN(-/-) cells is under control of the PI3K/AKT signaling pathway, as determined using pharmacological inhibitors. Interestingly, rapamycin, an mTOR inhibitor, upregulates MT1-MMP expression in PTEN(+/+) cells via PI3K activity. Collectively, these data in a mouse prostate cell system uncover for the first time a novel and complex relationship between PTEN loss-mediated PI3K/AKT activation and posttranslational regulation of MT1-MMP, which may play a role in PC progression.


Subject(s)
Cell Membrane/metabolism , Matrix Metalloproteinase 14/metabolism , PTEN Phosphohydrolase/metabolism , Protein Processing, Post-Translational , Animals , Cell Line, Tumor , Cell Movement , Enzyme Activation , Enzyme Precursors/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gelatinases/metabolism , Gene Expression Profiling , Genotype , Glycosylation , Humans , Immunoblotting , Male , Matrix Metalloproteinase 14/genetics , Mice , Mice, Knockout , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Sirolimus/pharmacology
7.
J Biol Chem ; 283(50): 35023-32, 2008 Dec 12.
Article in English | MEDLINE | ID: mdl-18936094

ABSTRACT

The membrane type (MT) 6 matrix metalloproteinase (MMP) (MMP25) is a glycosylphosphatidylinositol-anchored matrix metalloproteinase (MMP) that is highly expressed in leukocytes and in some cancer tissues. We previously showed that natural MT6-MMP is expressed on the cell surface as a major reduction-sensitive form of M(r) 120, likely representing enzyme homodimers held by disulfide bridges. Among the membrane type-MMPs, the stem region of MT6-MMP contains three cysteine residues at positions 530, 532, and 534 which may contribute to dimerization. A systematic site-directed mutagenesis study of the Cys residues in the stem region shows that Cys(532) is involved in MT6-MMP dimerization by forming an intermolecular disulfide bond. The mutagenesis data also suggest that Cys(530) and Cys(534) form an intramolecular disulfide bond. The experimental observations on cysteines were also investigated by computational studies of the stem peptide, which validate these proposals. Dimerization is not essential for transport of MT6-MMP to the cell surface, partitioning into lipid rafts or cleavage of alpha-1-proteinase inhibitor. However, monomeric forms of MT6-MMP exhibited enhanced autolysis and metalloprotease-dependent degradation. Collectively, these studies establish the stem region of MT6-MMP as the dimerization interface, an event whose outcome imparts protease stability to the protein.


Subject(s)
Glycosylphosphatidylinositols/chemistry , Matrix Metalloproteinases, Membrane-Associated/chemistry , Cell Differentiation , Cell Line, Tumor , Cell Membrane/metabolism , Computational Biology/methods , Cysteine/chemistry , Dimerization , Disulfides/chemistry , GPI-Linked Proteins , HL-60 Cells , Humans , Lipids/chemistry , Matrix Metalloproteinases, Membrane-Associated/metabolism , Membrane Microdomains , Mutagenesis, Site-Directed , Neutrophils/metabolism
8.
J Biol Chem ; 283(25): 17391-405, 2008 Jun 20.
Article in English | MEDLINE | ID: mdl-18413312

ABSTRACT

Membrane type 1 (MT1) matrix metalloproteinase (MMP-14) is a membrane-tethered MMP considered to be a major mediator of pericellular proteolysis. MT1-MMP is regulated by a complex array of mechanisms, including processing and endocytosis that determine the pool of active proteases on the plasma membrane. Autocatalytic processing of active MT1-MMP generates an inactive membrane-tethered 44-kDa product (44-MT1) lacking the catalytic domain. This form preserves all other enzyme domains and is retained at the cell surface. Paradoxically, accumulation of the 44-kDa form has been associated with increased enzymatic activity. Here we report that expression of a recombinant 44-MT1 (Gly(285)-Val(582)) in HT1080 fibrosarcoma cells results in enhanced pro-MMP-2 activation, proliferation within a three-dimensional collagen I matrix, and tumor growth and lung metastasis in mice. Stimulation of pro-MMP-2 activation and growth in collagen I was also observed in other cell systems. Expression of 44-MT1 in HT1080 cells is associated with a delay in the rate of active MT1-MMP endocytosis resulting in higher levels of active enzyme at the cell surface. Consistently, deletion of the cytosolic domain obliterates the stimulatory effects of 44-MT1 on MT1-MMP activity. In contrast, deletion of the hinge turns the 44-MT1 form into a negative regulator of enzyme function in vitro and in vivo, suggesting a key role for the hinge region in the functional relationship between active and processed MT1-MMP. Together, these results suggest a novel role for the 44-kDa form of MT1-MMP generated during autocatalytic processing in maintaining the pool of active enzyme at the cell surface.


Subject(s)
Gene Expression Regulation, Enzymologic , Matrix Metalloproteinase 14/physiology , Animals , Catalysis , Cell Line, Tumor , Cell Membrane/metabolism , Collagen/chemistry , Cytosol/metabolism , Endocytosis , Gene Expression Regulation, Neoplastic , Haplorhini , Humans , Models, Biological , Neoplasm Metastasis , Recombinant Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...