Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.301
Filter
1.
Article in English | MEDLINE | ID: mdl-38967894

ABSTRACT

OBJECTIVE: We aimed to investigate the changes in aorta size, the factors affecting size changes in patients with acute blunt traumatic aortic injury and to evaluate the adequacy of the current 120% thoracic endovascular aortic repair graft oversizing policy. DESIGN AND METHODS: This retrospective review study was conducted using the prospectively collected medical records of 45 patients (mean age: 53.5 years, male: 39 patients) with blunt traumatic aortic injury treated at a level 1 trauma center between 2012 and 2021. Aortic diameter was measured by computed tomography angiographic images at four different levels [ascending aorta (A), isthmus (B), descending thoracic aorta (C), and infrarenal aorta (D)] on arrival and follow-up (median time interval, 13 days). Associated factors including patient characteristics and hemodynamic parameters on arrival and follow-up were collected to determine their influence on changes in the aorta. RESULTS: The mean diameter of all four aortic levels increased on follow-up computed tomography compared to initial computed tomography (A: + 11.77%, B: + 10.19%, C: + 7.71%, D: + 12.04%). Patient age and injury severity score influenced changes in the diameter of the ascending aorta (P < 0.05). Patient age and blunt traumatic aortic injury grade were significantly associated with changes in the infrarenal aortic diameter (P < 0.05). Three cases of type 1 endoleak were observed at follow-up but all were spontaneously resolved without further intervention at next computed tomography follow-up. CONCLUSIONS: In patients with acute blunt traumatic aortic injury, aortic diameter is significantly smaller by about 10% under shock and is not considered a basis for oversizing the currently implemented 120% thoracic endovascular aortic repair graft sizing. However, in young patients under the age of 40, the change is significantly large and subsequent computed tomography follow-up is required.

2.
NEJM AI ; 1(5)2024 May.
Article in English | MEDLINE | ID: mdl-38962029

ABSTRACT

BACKGROUND: Diagnosing genetic disorders requires extensive manual curation and interpretation of candidate variants, a labor-intensive task even for trained geneticists. Although artificial intelligence (AI) shows promise in aiding these diagnoses, existing AI tools have only achieved moderate success for primary diagnosis. METHODS: AI-MARRVEL (AIM) uses a random-forest machine-learning classifier trained on over 3.5 million variants from thousands of diagnosed cases. AIM additionally incorporates expert-engineered features into training to recapitulate the intricate decision-making processes in molecular diagnosis. The online version of AIM is available at https://ai.marrvel.org. To evaluate AIM, we benchmarked it with diagnosed patients from three independent cohorts. RESULTS: AIM improved the rate of accurate genetic diagnosis, doubling the number of solved cases as compared with benchmarked methods, across three distinct real-world cohorts. To better identify diagnosable cases from the unsolved pools accumulated over time, we designed a confidence metric on which AIM achieved a precision rate of 98% and identified 57% of diagnosable cases out of a collection of 871 cases. Furthermore, AIM's performance improved after being fine-tuned for targeted settings including recessive disorders and trio analysis. Finally, AIM demonstrated potential for novel disease gene discovery by correctly predicting two newly reported disease genes from the Undiagnosed Diseases Network. CONCLUSIONS: AIM achieved superior accuracy compared with existing methods for genetic diagnosis. We anticipate that this tool may aid in primary diagnosis, reanalysis of unsolved cases, and the discovery of novel disease genes. (Funded by the NIH Common Fund and others.).

3.
J Microbiol Biotechnol ; 34(7): 1501-1510, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38960873

ABSTRACT

Inflammatory bowel disease (IBD), characterized by chronic inflammation of the gut, is caused by several factors. Among these factors, microbial factors are correlated with the gut microbiota, which produces short-chain fatty acids (SCFAs) via anaerobic fermentation. Fermented foods are known to regulate the gut microbiota composition. Ganjang (GJ), a traditional fermented Korean soy sauce consumed worldwide, has been shown to exhibit antioxidant, anticancer, anti-colitis, and antihypertensive activities. However, its effects on the gut microbiota remain unknown. In the present study, we aimed to compare the anti-inflammatory effects of GJ manufactured using different methods and investigate its effect on SCFA production in the gut. To evaluate the antiinflammatory effects of GJ in the gut, we performed animal experiments using a mouse model of dextran sulfate sodium (DSS)-induced colitis. All GJ samples attenuated DSS-induced colitis symptoms, including reduced colonic length, by suppressing the expression of inflammatory cytokines. In addition, GJ administration modulated SCFA production in the DSS-induced colitis model. Overall, GJ exerted anti-inflammatory effects by reducing DSS-induced symptoms via regulation of inflammation and modulation of SCFA levels in a DSS-induced colitis model. Thus, GJ is a promising fermented food with the potential to prevent IBD.

4.
Biomed Pharmacother ; 177: 117073, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981239

ABSTRACT

Adipogenesis is a process that differentiates new adipocytes from precursor cells and is tightly regulated by several factors, including many transcription factors and various post-translational modifications. Recently, new roles of adipogenesis have been suggested in various diseases. However, the molecular mechanisms and functional modulation of these adipogenic genes remain poorly understood. This review summarizes the regulatory factors and modulators of adipogenesis and discusses future research directions to identify novel mechanisms regulating adipogenesis and the effects of adipogenic regulators in pathological conditions. The master adipogenic transcriptional factors PPARγ and C/EBPα were identified along with other crucial regulatory factors such as SREBP, Kroxs, STAT5, Wnt, FOXO1, SWI/SNF, KLFs, and PARPs. These transcriptional factors regulate adipogenesis through specific mechanisms, depending on the adipogenic stage. However, further studies related to the in vivo role of newly discovered adipogenic regulators and their function in various diseases are needed to develop new potent therapeutic strategies for metabolic diseases and cancer.

5.
Mol Med Rep ; 30(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38994770

ABSTRACT

Acyl­coenzyme A thioesterases (ACOTs) are crucial in mediating lipid metabolic functions, including energy expenditure, hepatic gluconeogenesis and neuronal function. The two distinct types are type I and II ACOTs, the latter of which are 'hotdog' fold superfamily members. Type II ACOTs include carboxyl­terminal modulator protein 1 (CTMP1), also termed thioesterase superfamily member 4 (THEM4), and CTMP2, also termed THEM5. Due to their similar structural features and distinct sequence homology, CTMP1 and CTMP2 stand out from other type II ACOTs. CTMP1 was initially known as a protein kinase B (PKB) inhibitor that attenuates PKB phosphorylation. PKB is the central regulator of various cellular functions, including survival, proliferation, growth and metabolism. Therefore, by inhibiting PKB, CTMP1 can affect various cellular processes. Various other functions of CTMP1 have been revealed, including functions in cancer, brain injury, mitochondrial function and lipid metabolism. CTMP2 is a paralog of CTMP1 and was first identified as a cardiolipin remodeling factor involved in the development of fatty liver. As the functions of CTMP1 and CTMP2 were discovered separately, a review to summarize and connect these findings is essential. The current review delineates the intricate complexity of CTMP regulation across different metabolic pathways and encapsulates the principal discoveries concerning CTMP until the present day.


Subject(s)
Lipid Metabolism , Palmitoyl-CoA Hydrolase , Humans , Animals , Palmitoyl-CoA Hydrolase/metabolism , Palmitoyl-CoA Hydrolase/genetics , Thiolester Hydrolases/metabolism , Thiolester Hydrolases/genetics , Energy Metabolism , Membrane Proteins , Adaptor Proteins, Signal Transducing
6.
J Anim Sci Technol ; 66(3): 614-629, 2024 May.
Article in English | MEDLINE | ID: mdl-38975573

ABSTRACT

Hanwoo beef is in high demand because of its unique flavor, freshness, and high-fat content. However, the longer rearing period required to enhance marbling in Hanwoo cattle has adverse environmental consequences, such as greenhouse gas emissions and overall rearing costs. To address consumer preferences for leaner and healthier meat, the Korean meat industry has recently introduced Hanwoo heifer meat as an alternative source, but its quality traits are still unclear. Nevertheless, there is a limited body of research exploring the impact of Hanwoo gender (steer, heifer, and cow) and their corresponding slaughter ages on meat quality traits. This study looked into how gender affected the physicochemical and qualitative features of Hanwoo striploin at their respective slaughter ages. Results revealed that cow striploin has higher levels of moisture (66.81%) and protein (20.76%), whereas it contains lower levels of fat (10.66%) and cholesterol (34.66 mg/100 g). Regarding the physicochemical properties, cow striploin exhibited significantly lower shear force, color indexes, and soluble collagen (p < 0.05). However, chondroitin (1.19%) and muscle fiber area (1,545.23 µm2) were significantly higher in steer striploin than in heifer and cow (p < 0.05). Cow striploin exhibited significantly higher levels of oleic acid, unsaturated fatty acids (UFAs), and monounsaturated fatty acids (MUFAs) while having lower levels of eicosadienoic acid and atherogenic index compared to the other two groups. Cows and heifers had higher concentrations of amino acid metabolites than striploin from steers. Furthermore, bioactive metabolites such as carnitine and carnosine content were found higher in cow and heifer respectively. Overall, Hanwoo cattle gender influences the qualitative attributes of striploin; nevertheless, compared to steer and heifer striploin, cow striploin is a relatively good source of protein, fatty acid content, and metabolites conducive to a healthy diet.

7.
Sci Adv ; 10(28): eadl6280, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996018

ABSTRACT

H3K4 methylation by Set1-COMPASS (complex of proteins associated with Set1) is a conserved histone modification. Although it is critical for gene regulation, the posttranslational modifications of this complex that affect its function are largely unexplored. This study showed that N-terminal acetylation of Set1-COMPASS proteins by N-terminal acetyltransferases (NATs) can modulate H3K4 methylation patterns. Specifically, deleting NatA substantially decreased global H3K4me3 levels and caused the H3K4me2 peak in the 5' transcribed regions to shift to the promoters. NatA was required for N-terminal acetylation of three subunits of Set1-COMPASS: Shg1, Spp1, and Swd2. Moreover, deleting Shg1 or blocking its N-terminal acetylation via proline mutation of the target residue drastically reduced H3K4 methylation. Thus, NatA-mediated N-terminal acetylation of Shg1 shapes H3K4 methylation patterns. NatB also regulates H3K4 methylation, likely via N-terminal acetylation of the Set1-COMPASS protein Swd1. Thus, N-terminal acetylation of Set1-COMPASS proteins can directly fine-tune the functions of this complex, thereby substantially shaping H3K4 methylation patterns.


Subject(s)
Histone-Lysine N-Methyltransferase , Histones , Saccharomyces cerevisiae Proteins , Acetylation , Histones/metabolism , Methylation , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Protein Processing, Post-Translational , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics
8.
Animals (Basel) ; 14(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38998031

ABSTRACT

Zinc oxide (ZnO) is frequently used in high concentrations to prevent diarrhea in weaning pigs. However, it can produce environmental pollution, because it is not absorbed by the intestines and is excreted in the feces. In studies to identify an alternative substance to ZnO, we used a model of colitis induced by dextran sulfate sodium (DSS) in rats to compare the anti-inflammatory effects of berberine with ZnO. DSS-treated rats displayed weight loss, shortening of the colon, increased fecal water content, and an increase in the disease activity index (DAI). In contrast, DSS + ZnO- and DSS + berberine-treated rats exhibited reduced colon shortening, decreased fecal water content, and a decrease in the DAI. Histological analysis revealed that both ZnO and berberine treatment reduced epithelial cell damage, crypt destruction, and infiltration of inflammatory cells. Moreover, the liver damage index was not significantly different between ZnO and berberine-treated rats. This study indicated that both ZnO and berberine can improve DSS-induced colitis in rats and suggests berberine as an alternative treatment to ZnO that would not cause environmental pollution.

9.
Psychiatry Investig ; 21(6): 610-617, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38960438

ABSTRACT

OBJECTIVE: Increased fast food consumption can have adverse effects on health and well-being among adolescents, posing a significant public health concern. The school closures due to the coronavirus disease-2019 (COVID-19) pandemic have led to changes in eating patterns and disrupted a balance diet among adolescents. This study explored the factors associated with fast food consumption among adolescents during school closures due to the COVID-19 pandemic. METHODS: A total of 1,710 middle and high school students in Gwangju, South Korea participated in a cross-sectional survey. The self-administered questionnaire included items assessing dietary intake, physical activity, sleep, media use, and sociodemographic information. The Patient Health Questonnaire-9, Generalized Anxiety Disorder-7, and three item version of the UCLA Loneliness Scale were also administered. Multivariable logistic regression was used to examine the factors associated with increased fast food consumption. RESULTS: Approximately 34.6% of the surveyed adolescents reported increased fast food consumption during school closures, as well as increased sleep duration, increased sedentary behaviors including watching TV and using the internet, and reduced physical activity. Multivariable logistic regression analysis revealed that fast food consumption during school closures was associated with irregular patterns of main meals and sleep, decreased physical activity, increased internet use, and a lack of daytime adult supervision. CONCLUSION: Our results highlight the need for dietary and lifestyle monitoring and guidelines to promote health among adolescents, especially during school closures. In conclusion, nutrition intervention programs aiming to limit fast food consumption and enhance healthy dietary habits among adolescents during long-term school closures are warranted.

10.
Psychiatry Investig ; 21(6): 655-663, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38960443

ABSTRACT

OBJECTIVE: To address the gap in timely diagnosis of dementia due to limited screening tools, we investigated the validity and reliability of the Hellocog, computerized neuropsychological test based on tablets for screening dementia. The higher the probability score on the Hellocog, the higher the likelihood of dementia. METHODS: This study included 100 patients with dementia and 100 individuals with normal cognition who were aged 60 years or older and free of other major psychiatric, neurological, or medical conditions. They administered the Hellocog on a tablet under the supervision of a neuropsychologist. To determine test-retest reliability, 20 took the Hellocog again after 4 weeks. Diagnostic performance was assessed using the receiver operator characteristics (ROC) analysis. RESULTS: The Hellocog showed adequate internal consistency (Cronbach's alpha=0.69) and good test-retest reliability (intraclass correlation coefficient=0.86, p<0.001). Participants with dementia scored higher on the Hellocog than those with normal cognition (p<0.001), confirming its high criterion validity. Strong correlations with the Mini-Mental Status Examination (MMSE) score and the total score of the Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Assessment Battery (CERAD-TS) highlight the concurrent validity of the Hellocog. The area under the ROC curve for dementia of the Hellocog was excellent (0.971) and comparable to that of the MMSE and CERAD-TS. The sensitivity and specificity for dementia were 0.945 and 0.872%, respectively, which were slightly better than those of the MMSE and CERAD-TS. CONCLUSION: Hellocog stands out as a valid and reliable tool for self-administered dementia screening, with promise for improving early detection of dementia.

11.
iScience ; 27(7): 110248, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39015148

ABSTRACT

Appropriate ingestion of salt is essential for physiological processes such as ionic homeostasis and neuronal activity. Generally, low concentrations of salt elicit attraction, while high concentrations elicit aversive responses. Here, we observed that sugar neurons in the L sensilla of the Drosophila labellum cf. responses to NaCl, while sugar neurons in the S-c sensilla do not respond to NaCl, suggesting that gustatory receptor neurons involved in NaCl sensing may employ diverse molecular mechanisms. Through an RNAi screen of the entire Ir and ppk gene families and molecular genetic approaches, we identified IR76b, IR25a, and IR56b as necessary components for NaCl sensing in the Drosophila labellum. Co-expression of these three IRs in heterologous systems such as S2 cells or Xenopus oocytes resulted in a current in response to sodium stimulation, suggesting formation of a sodium-sensing complex. Our results should provide insights for research on the diverse combinations constituting salt receptor complexes.

12.
Sci Rep ; 14(1): 16255, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009598

ABSTRACT

Phedimus latiovalifolius (Y.N.Lee) D.C.Son & H.J.Kim is exclusively distributed in the high mountains in the Korean Peninsula, mainly along the Baekdudaegan mountain range. Despite its morphological and distributional distinction from other Phedimus Raf. species, its taxonomic identity and phylogenetic relationship with congeneric species remain unclear. This study employs genotyping-by-sequencing-derived genome-wide single nucleotide polymorphisms to establish the monophyly of P. latiovalifolius and its relationship with closely related species. Genetic diversity and population differentiation of P. latiovalifolius are also assessed to provide baseline genetic information for future conservation and management strategies. Our phylogenetic analyses robustly demonstrate the monophyletic nature of P. latiovalifolius, with P. aizoon (L.) 't Hart identified as its closest sister lineage. There is no genetic evidence supporting a hybrid origin of P. latiovalifolius from P. aizoon involving either P. ellacombeanus (Praeger) 't Hart or P. kamtschaticus (Fisch.) 't Hart. Population genetic analyses reveal two major groups within P. latiovalifolius. A higher genetic variation is observed in P. ellacombeanus than in the congeneric species. Notably, most of the genetic variation exists within P. latiovalifolius populations. Given its distribution and the potential role of Baekdudaegan as an East Asian Pleistocene refugia, P. latiovalifolius could be considered rare and endemic, persisting in the refugium across glacial/interglacial cycles.


Subject(s)
Genetic Variation , Phylogeny , Republic of Korea , Polymorphism, Single Nucleotide
13.
Oncogene ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937602

ABSTRACT

Mortalin (encoded by HSPA9) is a mitochondrial chaperone often overexpressed in cancer through as-yet-unknown mechanisms. By searching different RNA-sequencing datasets, we found that ESRRA is a transcription factor highly correlated with HSPA9 in thyroid cancer, especially in follicular, but not C cell-originated, tumors. Consistent with this correlation, ESRRA depletion decreased mortalin expression only in follicular thyroid tumor cells. Further, ESRRA expression and activity were relatively high in thyroid tumors with oncocytic characteristics, wherein ESRRA and mortalin exhibited relatively high functional overlap. Mechanistically, ESRRA directly regulated HSPA9 transcription through a novel ESRRA-responsive element located upstream of the HSPA9 promoter. Physiologically, ESRRA depletion suppressed thyroid tumor cell survival via caspase-dependent apoptosis, which ectopic mortalin expression substantially abrogated. ESRRA depletion also effectively suppressed tumor growth and mortalin expression in the xenografts of oncocytic or ESRRA-overexpressing human thyroid tumor cells in mice. Notably, our Bioinformatics analyses of patient data revealed two ESRRA target gene clusters that contrast oncocytic-like and anaplastic features of follicular thyroid tumors. These findings suggest that ESRRA is a tumor-specific regulator of mortalin expression, the ESRRA-mortalin axis has higher significance in tumors with oncocytic characteristics, and ESRRA target gene networks can refine molecular classification of thyroid cancer.

14.
Gels ; 10(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38920911

ABSTRACT

This study examined the tensile strength and biocompatibility properties of polyvinyl alcohol (PVA) hydrogel tissue regeneration scaffolds with polylactic acid (PLA) mesh fabric added as reinforcement, with a focus on the impact of heat treatment temperature and the number of layers of the PLA mesh fabric. The hydrogel scaffolds were prepared using a freeze-thaw method to create PVA hydrogel, with the PLA mesh fabric placed inside the hydrogel. The swelling ratio of the PVA/PLA hydrogel scaffolds decreased with increasing layer number and heat treatment temperature of the PLA mesh. The gel strength was highest when five layers of PLA mesh fabric were added, heat-treated at 120 °C, and confirmed to be properly placed inside the hydrogel by SEM images. The MTT assay and DAPI staining using HaCaT cells demonstrated that the cell proliferation was uninterrupted throughout the experimental period, confirming the biocompatibility of the scaffold. Therefore, we confirmed the possibility of using PLA mesh fabric as a reinforcement for PVA hydrogel to improve the strength of scaffolds for tissue regeneration, and we confirmed the potential of PLA mesh fabric as a reinforcement for various biomaterials.

15.
G3 (Bethesda) ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833595

ABSTRACT

Soybean is an important agricultural crop known for its high protein and oil content, contributing to essential nutritional and health benefits for humans. Domesticated in China over 5000 years ago, soybean has since adapted to diverse environments and spread worldwide. This study aimed to investigate the genomic characteristics and population structures of 2,317 publicly available soybean whole-genome sequences from diverse geographical regions, including China, Korea, Japan, Europe, North America and South America. We used large-scale whole-genome sequencing data to perform high-resolution analyses to reveal the genetic characteristics of soybean accessions. Soybean accessions from China and Korea exhibited landrace characteristics, indicating higher genetic diversity and adaptation to local environments. On the other hand, soybean accessions from Japan, the European Union, and South America were found to have low genetic diversity due to artificial selection and breeding for agronomic traits. We also identified key variants and genes associated with the ability to adapt to different environments. In Korean soybean accessions, we observed strong selection signals for isoflavone synthesis, an adaptive trait critical for improving soybean adaptability, survival, and reproductive success by mitigating environmental stress. Identifying specific genomic regions showing unique patterns of selective sweeps for genes such as HIDH, CYP73A11, IFS1, and CYP81E11 associated with isoflavone synthesis provided valuable insights into potential adaptation mechanisms. Our research has significantly improved our understanding of soybean diversity at the genetic level. We have identified key genetic variants and genes influencing adaptability, laying the foundation for future advances in genomics-based breeding programs and crop improvement efforts.

16.
BMB Rep ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38919019

ABSTRACT

The utilization of multi-omics research has gained popularity in clinical investigations. However, effectively managing and merging extensive and diverse datasets presents a challenge due to its intricacy. This research introduces a Multi-Omics Analysis Sandbox Toolkit, an online platform designed to facilitate the exploration, integration, and visualization of datasets ranging from single-omics to multi-omics. This platform establishes connections between clinical data and omics information, allowing for versatile analysis and storage of both single and multi-omics data. Additionally, users can repeatedly utilize and exchange their findings within the platform. This toolkit offers diverse alternatives for data selection and gene set analysis. It also presents visualization outputs, potential candidates, and annotations. Furthermore, this platform empowers users to collaborate by sharing their datasets, analyses, and conclusions with others, thus enhancing its utility as a collaborative research tool. This Multi-Omics Analysis Sandbox Toolkit stands as a valuable asset in comprehensively grasping the influence of diverse factors in diseases and pinpointing potential biomarkers.

17.
Medicine (Baltimore) ; 103(23): e38411, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847668

ABSTRACT

Many patients who cannot squat well in a neutral toe position can only squat in an excessively out-toeing position. This excessive out-toeing squat is thought to be caused by rotational problems of the lower extremities. In this study, we aimed to identify the cause for the inability to squat by measuring and comparing femoral and tibial torsion between an excessive out-toeing squat patient group and a control group representing the general population. Between 2008 and 2022, a patient group comprising 50 lower extremities with excessive out-toeing squats was established. A control group representing the general population was selected from patients aged 0 to 29 years, who underwent lower-extremity CT angiography between 2012 and 2022, using the Clinical Data Warehouse with exclusion criteria applied. A total of 94 lower extremities were included in the control group. The femoral torsional angle (FTA) and tibial torsional angle (TTA) of both groups were measured and compared using Student t test. Additionally, 30 each of those with the highest and lowest 30 FTA values were selected from the patient and control groups, and the TTA was compared between the high- and low-FTA groups using Student t test. The mean FTA was 0.34° (SD, 11.11°) in the patient group and 10.14° (SD, 11.85°) in the control group, with a mean difference of 9.8° and P < .001. The mean TTA was 27.95° (SD, 7.82°) in the patient group and 32.67 ° (SD, 7.58°) in the control group, with a mean difference of 4.72° (P = .001). The mean TTA was 34.3° (SD, 7.72°) in the high-FTA group and 28.17° (SD, 8.35°) in the low-FTA group, with a mean difference of 6.13° (P = .005). Patients with excessive out-toeing squat showed lower FTA and TTA values than the general population. Furthermore, although a correlation between FTA and TTA was not established through Pearson correlation analysis, a tendency was observed where a decrease in FTA was associated with a decrease in TTA. Based on these results, decreased FTA was demonstrated to be one of the major causes of excessive out-toeing squats.


Subject(s)
Femur , Tibia , Humans , Femur/diagnostic imaging , Male , Female , Adult , Adolescent , Young Adult , Tibia/diagnostic imaging , Child , Child, Preschool , Tomography, X-Ray Computed/methods , Middle Aged , Case-Control Studies , Infant , Torsion Abnormality/diagnostic imaging , Torsion Abnormality/physiopathology , Posture/physiology , Aged , Retrospective Studies
18.
Int J Mol Sci ; 25(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38892352

ABSTRACT

Blackberries (Rubus fruticosus), which are known to include a variety of bioactive substances, have been extensively studied for their antioxidant properties. Blackberries possess multiple health beneficial effects, including anti-inflammation, anti-atherosclerosis, anti-tumor and immunomodulatory activity. However, the potential biological effects and precise molecular mechanisms of the fermented extracts remain largely unexplored. In this research, we demonstrate the effect of blackberries fermented with Lactobacillus for addressing obesity. We investigated the effect of blackberries fermented by Lactobacillus on mice fed a high-fat (60% kcal) diet for 12 weeks. Fermented blackberry administration reduced the body weight and epididymal fat caused by a high-fat diet compared to the obese group. The triglyceride and total cholesterol, which are blood lipid indicators, and the levels of leptin, which is an insulin resistance indicator, were significantly increased in the obese group but were significantly decreased in the fermented blackberries-treated group. Additionally, the expression of adipogenesis marker proteins, such as CEBPα, PPAR-γ and SREBP-1, was significantly increased in the obese group, whereas it was decreased in the fermented blackberries-treated group. These results suggest that fermented blackberries have a protective effect against high-fat-diet-induced obesity by inhibiting adipogenesis and are a potential candidate for the treatment of obesity.


Subject(s)
Adipogenesis , Anti-Obesity Agents , Diet, High-Fat , Fermentation , Lactobacillus plantarum , Obesity , PPAR gamma , Rubus , Signal Transduction , Animals , Adipogenesis/drug effects , Rubus/chemistry , Mice , Obesity/metabolism , Anti-Obesity Agents/pharmacology , Male , Diet, High-Fat/adverse effects , PPAR gamma/metabolism , Signal Transduction/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Mice, Inbred C57BL , Leptin/metabolism , Leptin/blood , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Triglycerides/blood , Triglycerides/metabolism , Body Weight/drug effects
19.
Genomics Inform ; 22(1): 6, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38907287

ABSTRACT

Here, we investigated that the heat shock protein 47 (HSP47) plays a crucial role in the progression of gastric cancer (GC). We analyzed HSP47 gene expression in GC cell lines and patient tissues. The HSP47 mRNA and protein expression levels were significantly higher in GC cell lines and tumor tissues compared to normal gastric mucosa. Using siRNA to silence the expression of HSP47 in GC cells resulted in a significant reduction in their proliferation, wound healing, migration, and invasion capacities. Additionally, we also showed that the mRNA expression of matrix metallopeptidase-7 (MMP-7), a metastasis-promoting gene, was significantly reduced in HSP47 siRNA-transfected GC cells. We confirmed that the HSP47 promoter region was methylated in the SNU-216 GC cell line expressing low levels of HSP47 and in most non-cancerous gastric tissues. It means that the expression of HSP47 is regulated by epigenetic regulatory mechanisms. These findings suggest that targeting HSP47, potentially through its promoter methylation, could be a useful new therapeutic strategy for treating GC.

20.
Article in English | MEDLINE | ID: mdl-38862433

ABSTRACT

During the last decade, the generation and accumulation of petabase-scale high-throughput sequencing data have resulted in great challenges, including access to human data, as well as transfer, storage, and sharing of enormous amounts of data. To promote data-driven biological research, the Korean government announced that all biological data generated from government-funded research projects should be deposited at the Korea BioData Station (K-BDS), which consists of multiple databases for individual data types. Here, we introduce the Korean Nucleotide Archive (KoNA), a repository of nucleotide sequence data. As of July 2022, the Korean Read Archive in KoNA has collected over 477 TB of raw next-generation sequencing data from national genome projects. To ensure data quality and prepare for international alignment, a standard operating procedure was adopted, which is similar to that of the International Nucleotide Sequence Database Collaboration. The standard operating procedure includes quality control processes for submitted data and metadata using an automated pipeline, followed by manual examination. To ensure fast and stable data transfer, a high-speed transmission system called GBox is used in KoNA. Furthermore, the data uploaded to or downloaded from KoNA through GBox can be readily processed using a cloud computing service called Bio-Express. This seamless coupling of KoNA, GBox, and Bio-Express enhances the data experience, including submission, access, and analysis of raw nucleotide sequences. KoNA not only satisfies the unmet needs for a national sequence repository in Korea but also provides datasets to researchers globally and contributes to advances in genomics. The KoNA is available at https://www.kobic.re.kr/kona/.


Subject(s)
Databases, Nucleic Acid , Republic of Korea , Humans , High-Throughput Nucleotide Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...