Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 15272, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32943703

ABSTRACT

Bovine spongiform encephalopathy (BSE) is a fatal infectious neurodegenerative disease caused by the accumulation of pathogenic prion protein (PrPSc) in the central nervous system (CNS), particularly in the brain. In a recent study, the shadow of prion protein (Sho), encoded by the shadow of prion protein (SPRN) gene, accelerates the progression of prion diseases, and a 12-bp insertion/deletion polymorphism in the coding region of the SPRN gene is associated with susceptibility to atypical BSE-affected Polish cattle. To date, the genetic study of the SPRN gene in Korean cattle has not been performed. In this study, we investigated the genotype and allele frequencies of SPRN polymorphisms in 235 Hanwoo and 212 Holstein cattle and analyzed the linkage disequilibrium (LD) and haplotypes of SPRN polymorphisms. In addition, we compared the distribution of the 12-bp insertion/deletion polymorphism between atypical BSE-diagnosed Polish cattle and Korean cattle to evaluate the susceptibility of atypical BSE. Furthermore, we estimated a deleterious effect of polymorphisms on the Sho protein using PROVEAN. We found a total of seven polymorphisms, including one novel single nucleotide polymorphism (SNP), c.231G>A. We also found significantly different distributions of genotype, allele and haplotype frequencies of seven polymorphisms between Hanwoo and Korean Holstein cattle. In addition, all polymorphisms showed strong LDs among the seven polymorphisms. Interestingly, Hanwoo cattle showed more potential susceptible distribution in the genotype and allele frequencies of the 12-bp insertion/deletion polymorphisms of the SPRN gene than Holstein cattle. Finally, using PROVEAN, we found one novel deleterious nonsynonymous SNP to Sho protein, c.110G>C (G37A). To the best of our knowledge, this is the first study of the SPRN gene in Korean cattle.


Subject(s)
Polymorphism, Single Nucleotide/genetics , Prion Proteins/genetics , Alleles , Animals , Cattle , Encephalopathy, Bovine Spongiform/genetics , Gene Frequency/genetics , Genotype , Haplotypes/genetics , Linkage Disequilibrium/genetics , Open Reading Frames/genetics , Republic of Korea
2.
Sci Rep ; 9(1): 15261, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31649311

ABSTRACT

Prion diseases in sheep and goats are called scrapie and belong to a group of transmissible spongiform encephalopathies (TSEs) caused by the abnormal misfolding of the prion protein encoded by the prion protein gene (PRNP). The shadow of the prion protein gene (SPRN) is the only prion gene family member that shows a protein expression profile similar to that of the PRNP gene in the central nervous system. In addition, genetic susceptibility of the SPRN gene has been reported in variant Creutzfeldt-Jakob disease (CJD), bovine spongiform encephalopathy (BSE) and scrapie. However, genetic studies of the SPRN gene have not been carried out in Korean native black goats. Here, we investigated the genotype and allele frequencies of SPRN polymorphisms in 213 Korean native black goats and compared these polymorphisms with those previously reported for scrapie-affected animals. We found a total of 6 polymorphisms including 1 nonsynonymous single nucleotide polymorphism (SNP) and 1 synonymous SNP in the open reading frame (ORF) region and 3 SNPs and 1 indel polymorphism (c.495_496insCTCCC) in the 3' untranslated region (UTR) by direct DNA sequencing. A significant difference in the allele frequency of the c.495_496insCTCCC indel polymorphism was found between the Italian scrapie-affected goats and the Korean native black goats (P < 0.001). Furthermore, there was a significant difference in the allele frequencies of the c.495_496insCTCCC indel polymorphism between Italian healthy goats and Korean native black goats (P < 0.001). To evaluate the biological impact of the novel nonsynonymous SNP c.416G > A (Arg139Gln), we carried out PROVEAN analysis. PROVEAN predicted the SNP as 'Neutral' with a score of -0.297. To the best of our knowledge, this is the first genetic study of the SPRN gene in Korean native black goats.


Subject(s)
Goat Diseases/genetics , INDEL Mutation , Nerve Tissue Proteins/genetics , Prion Proteins/genetics , Scrapie/genetics , Animals , Goats , Polymorphism, Single Nucleotide , Prions/genetics , Republic of Korea
3.
Sci Rep ; 9(1): 15293, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31653880

ABSTRACT

Small ruminants, including sheep and goats are natural hosts of scrapie, and the progression of scrapie pathogenesis is strongly influenced by polymorphisms in the prion protein gene (PRNP). Although Korean native goats have been consumed as meat and health food, the evaluation of the susceptibility to scrapie in these goats has not been performed thus far. Therefore, we investigated the genotype and allele frequencies of PRNP polymorphisms in 211 Korean native goats and compared them with those in scrapie-affected animals from previous studies. We found a total of 12 single nucleotide polymorphisms (SNPs) including 10 nonsynonymous and 2 synonymous SNPs in Korean native goats. Significant differences in allele frequencies of PRNP codons 143 and 146 were found between scrapie-affected goats and Korean native goats (p < 0.01). By contrast, in PRNP codons 168, 211 and 222, there were no significant differences in the genotype and allele frequencies between scrapie-affected animals and Korean native goats. To evaluate structural changes caused by nonsynonymous SNPs, PolyPhen-2, PROVEAN and AMYCO analyses were performed. PolyPhen-2 predicted "possibly damaging" for W102G and R154H, "probably damaging" for G127S. AMYCO predicted relatively low for amyloid propensity of prion protein in Korean native black goats. This is the first study to evaluate the scrapie sensitivity and the first in silico evaluation of nonsynonymous SNPs in Korean native black goats.


Subject(s)
Genetic Predisposition to Disease/genetics , Goat Diseases/genetics , Goats/genetics , Polymorphism, Single Nucleotide , Prion Proteins/genetics , Scrapie/genetics , Alleles , Animals , Gene Frequency , Genotype , Republic of Korea
4.
Genes (Basel) ; 11(1)2019 12 28.
Article in English | MEDLINE | ID: mdl-31905681

ABSTRACT

Prion diseases are fatal neurodegenerative diseases and are characterized by the accumulation of abnormal prion protein (PrPSc) in the brain. During the outbreak of the bovine spongiform encephalopathy (BSE) epidemic in the United Kingdom, prion diseases in several species were reported; however, horse prion disease has not been reported thus far. In previous studies, the shadow of prion protein (Sho) has contributed to an acceleration of conversion from normal prion protein (PrPC) to PrPSc, and the shadow of prion protein gene (SPRN) polymorphisms have been significantly associated with the susceptibility of prion diseases. We investigated the genotype, allele and haplotype frequencies of the SPRN gene using direct sequencing. In addition, we analyzed linkage disequilibrium (LD) and haplotypes among polymorphisms. We also investigated LD between PRNP and SPRN single nucleotide polymorphisms (SNPs). We compared the amino acid sequences of Sho protein between the horse and several prion disease-susceptible species using ClustalW2. To perform Sho protein modeling, we utilized SWISS-MODEL and Swiss-PdbViewer programs. We found a total of four polymorphisms in the equine SPRN gene; however, we did not observe an in/del polymorphism, which is correlated with the susceptibility of prion disease in prion disease-susceptible animals. The SPRN SNPs showed weak LD value with PRNP SNP. In addition, we found 12 horse-specific amino acids of Sho protein that can induce significantly distributional differences in the secondary structure and hydrogen bonds between the horse and several prion disease-susceptible species. To the best of our knowledge, this is the first report regarding the genetic and structural characteristics of the equine SPRN gene.


Subject(s)
Disease Resistance , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , Animals , Haplotypes , Horses , Hydrogen Bonding , Linkage Disequilibrium , Models, Molecular , Prion Proteins/genetics , Protein Structure, Secondary , Sequence Analysis, DNA , Sequence Analysis, Protein , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...