Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 17(48): e2006262, 2021 12.
Article in English | MEDLINE | ID: mdl-33682293

ABSTRACT

Recently, as flexible and wearable electronic devices have become widely popular, research on light weight and large-capacity batteries suitable for powering such devices has been actively conducted. In particular, graphene has attracted considerable attention from researchers in the battery field owing to its good mechanical properties and its applicability in various processes to fabricate electrodes for batteries. Graphene is classified into two types: flake-type, fabricated from graphite, and film-type, synthesized using chemical vapor deposition. The unique processes involved in these two types enable the fabrication of flexible and stretchable batteries with various shapes and functions. In this article, the recent progress in the development of flexible and stretchable batteries based on graphene, as well as its important technical issues are reviewed.


Subject(s)
Graphite , Nanostructures , Wearable Electronic Devices , Electric Power Supplies , Electrodes
2.
Nat Commun ; 9(1): 1417, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29650957

ABSTRACT

Efficient and highly functional three-dimensional systems that are ubiquitous in biology suggest that similar design architectures could be useful in electronic and optoelectronic technologies, extending their levels of functionality beyond those achievable with traditional, planar two-dimensional platforms. Complex three-dimensional structures inspired by origami, kirigami have promise as routes for two-dimensional to three-dimensional transformation, but current examples lack the necessary combination of functional materials, mechanics designs, system-level architectures, and integration capabilities for practical devices with unique operational features. Here, we show that two-dimensional semiconductor/semi-metal materials can play critical roles in this context, through demonstrations of complex, mechanically assembled three-dimensional systems for light-imaging capabilities that can encompass measurements of the direction, intensity and angular divergence properties of incident light. Specifically, the mechanics of graphene and MoS2, together with strategically configured supporting polymer films, can yield arrays of photodetectors in distinct, engineered three-dimensional geometries, including octagonal prisms, octagonal prismoids, and hemispherical domes.

3.
Nanoscale ; 7(16): 7065-71, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25587843

ABSTRACT

This work demonstrates a simple route to develop mechanically flexible electrodes for Li-ion batteries (LIBs) that are usable as lightweight effective conducting networks for both cathodes and anodes. Removing electrochemically dead elements, such as binders, conducting agents and metallic current collectors, from the battery components will allow remarkable progress in this area. To investigate the feasibility of using thick, additive-free graphene films as anodes for flexible LIBs, we have synthesized and tested thick, additive-free, freestanding graphene films as anodes, first in a coin cell and further in a flexible full cell. As an anode material in a half cell, it showed a discharge capacity of about 350 mA h g(-1) and maintained nearly this capacity over 50 cycles at various current rates. This film was also tested as an anode material in a full cell with a LiCoO2 cathode and showed good electrochemical performance. Because the graphene-based flexible film showed good performance in half- and full coin cells, we used this film as a flexible anode for flexible LIBs. No conducting agent or binder was used in the anode side, which helped in realizing the flexible LIBs. Using this, we demonstrate a thin, lightweight and flexible lithium ion battery with good electrochemical performance in both its flat and bent states.

SELECTION OF CITATIONS
SEARCH DETAIL
...