Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Foods ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38790847

ABSTRACT

In this study, we investigated the anti-hypertensive properties of mulberry products by modulating the renin-angiotensin system (RAS). Comparative analysis showed that the ethyl acetate fractions, particularly from the Cheongil and Daeshim cultivars, contained the highest levels of polyphenols and flavonoids, with concentrations reaching 110 mg gallic acid equivalent (GE)/g and 471 mg catechin equivalent (CE)/g of extract, respectively. The ethyl acetate fraction showed superior angiotensin-converting enzyme (ACE) inhibitory activity, mainly because of the presence of the prenylated flavonoids kuwanon G and H. UPLC/Q-TOF-MS analysis identified kuwanon G and H as the primary active components, which significantly contributed to the pharmacological efficacy of the extract. In vivo testing of mice fed a high-salt diet showed that the ethyl acetate fraction substantially reduced the heart weight and lowered the serum renin and angiotensinogen levels by 34% and 25%, respectively, highlighting its potential to modulate the RAS. These results suggested that the ethyl acetate fraction of mulberry root bark is a promising candidate for the development of natural ACE inhibitors. This finding has significant implications for the management of hypertension through RAS regulation and the promotion of cardiovascular health in the functional food industry.

2.
Int J Mol Sci ; 25(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38612767

ABSTRACT

Diseases that occur in silkworms include soft rot, hardening disease, digestive diseases, and sepsis. However, research on the causes of bacterial diseases occurring in silkworms and the resulting changes in the microbial community is lacking. Therefore, we examined the morphological characteristics of sepsis and changes in the microbial community between silkworms that exhibit a unique odor and healthy silkworms; thus, we established a relationship between disease-causing microorganisms and sepsis. After producing a 16S rRNA amplicon library for samples showing sepsis, we obtained information on the microbial community present in silkworms using next-generation sequencing. Compared to that in healthy silkworms, in silkworms with sepsis, the abundance of the Firmicutes phylum was significantly reduced, while that of Proteobacteria was increased. Serratia sp. was dominant in silkworms with sepsis. After bacterial isolation, identification, and reinfection through the oral cavity, we confirmed this organism as the disease-causing agent; its mortality rate was 1.8 times higher than that caused by Serratia marcescens. In summary, we identified a new causative bacterium of silkworm sepsis through microbial community analysis and confirmed that the microbial community balance was disrupted by the aberrant proliferation of certain bacteria.


Subject(s)
Bombyx , Microbiota , Sepsis , Animals , Serratia/genetics , RNA, Ribosomal, 16S/genetics
3.
Sensors (Basel) ; 23(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139624

ABSTRACT

Silk fiber, recognized as a versatile bioresource, holds wide-ranging significance in agriculture and the textile industry. During the breeding of silkworms to yield new varieties, optical sensing techniques have been employed to distinguish the colors of silk cocoons, aiming to assess their improved suitability across diverse industries. Despite visual comparison retaining its primary role in differentiating colors among a range of silk fibers, the presence of uneven surface texture leads to color distortion and inconsistent color perception at varying viewing angles. As a result, these distorted and inconsistent visual assessments contribute to unnecessary fiber wastage within the textile industry. To solve these issues, we have devised an optical system employing an integrating sphere to deliver consistent and uniform illumination from all orientations. Utilizing a ColorChecker, we calibrated the RGB values of silk cocoon images taken within the integrating sphere setup. This process accurately extracts the authentic RGB values of the silk cocoons. Our study not only helps in unraveling the intricate color of silk cocoons but also presents a unique approach applicable to various specimens with uneven surface textures.


Subject(s)
Bombyx , Silk , Animals , Silk/chemistry
4.
J Insect Sci ; 23(5)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37804503

ABSTRACT

The domesticated silkworm, Bombyx mori Linnaeus (Lepidoptera: Bombycidae), often poses a challenge in strain identification due to similarities in morphology and genetic background. In South Korea, around 40 silkworm strains are classified as premium, including 5 endemic tri-molting strains: Goryeosammyeon, Sammyeonhonghoeback, Hansammyeon, Sun7ho, and Sandongsammyeon. These strains have potential for breeding programs in response to emerging industry demands, necessitating a reliable strain identification method. In this study, we established a molecular diagnosis approach for these 5 strains. We selected 2-4 single-nucleotide polymorphisms (SNPs) for each strain from whole-genome sequences of 39 strains, encompassing 37 previously studied and 2 newly added. These SNPs were utilized to construct decision trees for each endemic strain identification. The SNPs can be used to distinguish each target strain from the 38 nontarget strains by the tetra-primer amplification refractory mutation system-polymerase chain reaction, with the exception of HMS which needs the addition of PCR-restriction fragment length polymorphism method at the final step. This decision tree-based method using genomic SNPs, coupled with the 2 typing methods, produced consistent and accurate results, providing 100% accuracy. Additionally, the significant number of remaining SNPs identified in this study could be valuable for future diagnosis of the other strains.


Subject(s)
Bombyx , Polymorphism, Single Nucleotide , Animals , Bombyx/genetics , Chromosome Mapping , Polymerase Chain Reaction , Republic of Korea
5.
ACS Cent Sci ; 8(5): 513-526, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35647284

ABSTRACT

Counterfeit medicines are a healthcare security problem, posing not only a direct threat to patient safety and public health but also causing heavy economic losses. Current anticounterfeiting methods are limited due to the toxicity of the constituent materials and the focus of secondary packaging level protections. We introduce an edible, imperceptible, and scalable matrix code of information representation and data storage for pharmaceutical products. This matrix code is digestible as it is composed of silk fibroin genetically encoded with fluorescent proteins produced by ecofriendly, sustainable silkworm farming. Three distinct fluorescence emission colors are incorporated into a multidimensional parameter space with a variable encoding capacity in a format of matrix arrays. This code is smartphone-readable to extract a digitized security key augmented by a deep neural network for overcoming fabrication imperfections and a cryptographic hash function for enhanced security. The biocompatibility, photostability, thermal stability, long-term reliability, and low bit error ratio of the code support the immediate feasibility for dosage-level anticounterfeit measures and authentication features. The edible code affixed to each medicine can serve as serialization, track and trace, and authentication at the dosage level, empowering every patient to play a role in combating illicit pharmaceuticals.

6.
Sci Data ; 9(1): 189, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35474080

ABSTRACT

Bombyx mori is a key insect in the sericulture industry and one of the very important economic animals that are responsible for not only the livelihood of many farmers internationally but also expended biomedical use. The National Institute of Agricultural Sciences of the Rural Development Administration of Korea (NIAS, RDA, Korea) has been collecting silkworm resources with various phenotypic traits from the 1960s and established breeding lines for using them as genetic resources. And these breeding line strains have been used to develop suitable F1 hybrid strains for specific use. In this study, we report the whole-genome sequences of 37 breeding line B. mori strains established over the past 60 years, along with the description of their phenotypic characteristics with photos of developmental stages. In addition, we report the example phenotypic characteristics of the F1-hybrid strain using these breeding line strains. We hope this data will be used as valuable resources to the related research community for studying B. mori and similar other insects.


Subject(s)
Bombyx , Genome, Insect , Animals , Bombyx/genetics , Breeding , Phenotype , Republic of Korea
7.
Biology (Basel) ; 11(1)2022 Jan 03.
Article in English | MEDLINE | ID: mdl-35053066

ABSTRACT

We report 37 mitochondrial genome (mitogenome) sequences of Bombyx mori strains (Lepidoptera: Bombycidae) and four of B. mandarina individuals, each preserved and collected, respectively, in South Korea. These mitogenome sequences combined with 45 public data showed a substantial genetic reduction in B. mori strains compared to the presumed ancestor B. mandarina, with the highest diversity detected in the Chinese origin B. mori. Chinese B. mandarina were divided into northern and southern groups, concordant to the Qinling-Huaihe line, and the northern group was placed as an immediate progenitor of monophyletic B. mori strains in phylogenetic analyses, as has previously been detected. However, one individual that was in close proximity to the south Qinling-Huaihe line was exceptional, belonging to the northern group. The enigmatic South Korean population of B. mandarina, which has often been regarded as a closer genetic group to Japan, was most similar to the northern Chinese group, evidencing substantial gene flow between the two regions. Although a substantial genetic divergence is present between B. mandarina in southern China and Japan, a highly supported sister relationship between the two regional populations may suggest the potential origin of Japanese B. mandarina from southern China instead of the Korean peninsula.

8.
Nanomaterials (Basel) ; 11(7)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34361201

ABSTRACT

Biopolymers are a solution to solve the increasing problems caused by the advances and revolution in the electronic industry owing to the use of hazardous chemicals. In this work, we have used egg white (EW) as the low-cost functional layer of a biocompatible humidity sensor and deposited it on gold (Au) interdigitated electrodes (IDEs) patterned through the state-of-the-art fabrication technology of thermal vacuum evaporation. The presence of hydrophilic proteins inside the thin film of EW makes it an attractive candidate for sensing humidity. Usually, the dependence of the percentage of relative humidity (%RH) on the reliability of measurement setup is overlooked for impedimetric humidity sensors but we have used a modified experimental setup to enhance the uniformity of the obtained results. The characteristics of our device include almost linear response with a quick response time (1.2 s) and fast recovery time (1.7 s). High sensitivity of 50 kΩ/%RH was achieved in the desirable detection range of 10-85%RH. The device size was intentionally kept small for its potential integration in a marketable chip. Results for the response of our fabricated sensor for dry and wet fingertips, along with determining the rate of breathing through the mouth, are part of this study, making it a potential device for health monitoring.

9.
Nanomaterials (Basel) ; 11(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34443746

ABSTRACT

A novel composite based on a polymer (P(VDF-TrFE)) and a two-dimensional material (graphene flower) was proposed as the active layer of an interdigitated electrode (IDEs) based humidity sensor. Silver (Ag) IDEs were screen printed on a flexible polyethylene terephthalate (PET) substrate followed by spin coating the active layer of P(VDF-TrFE)/graphene flower on its surface. It was observed that this sensor responds to a wide relative humidity range (RH%) of 8-98% with a fast response and recovery time of 0.8 s and 2.5 s for the capacitance, respectively. The fabricated sensor displayed an inversely proportional response between capacitance and RH%, while a directly proportional relationship was observed between its impedance and RH%. P(VDF-TrFE)/graphene flower-based flexible humidity sensor exhibited high sensitivity with an average change of capacitance as 0.0558 pF/RH%. Stability of obtained results was monitored for two weeks without any considerable change in the original values, signifying its high reliability. Various chemical, morphological, and electrical characterizations were performed to comprehensively study the humidity-sensing behavior of this advanced composite. The fabricated sensor was successfully used for the applications of health monitoring and measuring the water content in the environment.

10.
Mitochondrial DNA B Resour ; 6(8): 2278-2280, 2021.
Article in English | MEDLINE | ID: mdl-34286098

ABSTRACT

To meet the increasing demands of the society in the current era, new strains of the domesticated silkworm Bombyx mori Linnaeus, 1758 (Lepidoptera: Bombycidae) are being continuously bred. Consequently, cataloging the genetic information of pure lines is essential. The strain Jam 146, whose larvae have atypical pale, crescent-shaped body markings, is an important breeding resource due to its excellent fecundity. In this study, we sequenced the mitochondrial genome (mitogenome) of this strain using next-generation sequencing. The complete genome of this strain has a gene arrangement typical of Lepidoptera. The length of the Jam 146 mitogenome (15,661 bp) is well within the range reported in other B. mori strains, i.e. between 15,629 (Baiyun strain, China) and 15,676 bp (Hukpyobeom strain, South Korea). However, the total length of protein-coding genes, 3,733 codons in Jam 146 and two other silkworm strains previously reported from South Korea, is 13 codons longer than that in other B. mori strains. Phylogenetic analysis of 22 silkworm strains from nine countries showed that the Jam 146 strain forms a strong cluster with three other strains from China, Japan, and South Korea, suggesting that after their split from a common ancestor, the evolutionary divergence among the silkworm strains in these countries has been limited.

11.
J Nanosci Nanotechnol ; 21(8): 4418-4422, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33714337

ABSTRACT

Ag-paste is used as an electrode material in various fields as a manufacturing advantage that enables solution processing. However, when a subsequent thin film is formed on the solidified Ag-paste electrode, there is a fear that the bonding force between the Ag-paste electrode and the subsequent thin film is weakened and peeled off due to the low surface energy of the Agpaste electrode. It is necessary to increase the surface energy of the Ag-paste electrode surface since it ultimately directly affects the yield of the device or product. In this study, the UV/ozone treatment process was introduced to increase the Ag-paste surface energy, thereby making the surface hydrophilic. Additionally, it was confirmed that the UV/ozone treatment process affected only the surface of the Ag-paste electrode by extracting the contact resistance.

12.
Nanomaterials (Basel) ; 11(1)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477616

ABSTRACT

Performance of an electronic device relies heavily on the availability of a suitable functional material. One of the simple, easy, and cost-effective ways to obtain novel functional materials with improved properties for desired applications is to make composites of selected materials. In this work, a novel composite of transparent n-type zinc oxide (ZnO) with a wide bandgap and a unique structure of graphene in the form of a graphene flower (GrF) is synthesized and used as the functional layer of a humidity sensor. The (GrF/ZnO) composite was synthesized by a simple sol-gel method. Morphological, elemental, and structural characterizations of GrF/ZnO composite were performed by a field emission scanning electron microscope (FESEM), energy-dispersive spectroscopy (EDS), and an x-ray diffractometer (XRD), respectively, to fully understand the properties of this newly synthesized functional material. The proposed humidity sensor was tested in the relative humidity (RH) range of 15% RH% to 86% RH%. The demonstrated sensor illustrated a highly sensitive response to humidity with an average current change of 7.77 µA/RH%. Other prominent characteristics shown by this device include but were not limited to high stability, repeatable results, fast response, and quick recovery time. The proposed humidity sensor was highly sensitive to human breathing, thus making it a promising candidate for various applications related to health monitoring.

13.
Biotechnol Prog ; 36(6): e3054, 2020 11.
Article in English | MEDLINE | ID: mdl-32706513

ABSTRACT

Genome editing by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR associated protein (Cas)9, a third-generation gene scissors, and molecular breeding at the genome level are attracting considerable attention as future breeding techniques. In the present study, genetic and phenotypic analyses were conducted to examine the molecular breeding of Bombyx mori through CRISPR/Cas9-mediated editing of the kynurenine 3-monooxygenase (KMO) gene. The synthesized guide RNAs (gRNAs) were analyzed using T7 endonuclease I after introduction into the BM-N silkworm cell line. To edit the silkworm gene, K1P gRNA, and Cas9 complexes were microinjected into silkworm embryos. After microinjection, the hatching rate and the incidence of mutation were determined as 18.1% and 60%, respectively. Gene mutation was verified in the heterozygous G0 generation, but no phenotypic change was observed; however, certain embryos and moths produced through sib-mating had significant differences compared to the wild-type. In successive generations, a distinct phenotypic change was also observed by continuous mating. Thus, although there are limitations in the phenotypic expression in breeding through the induction of deletion mutations, as in the present study, the process is believed to yield successful results within a shorter period compared to traditional breeding and is safer than transgenic technology.


Subject(s)
Bombyx/genetics , DNA Shuffling/methods , Gene Editing/methods , Kynurenine 3-Monooxygenase/genetics , Animals , CRISPR-Cas Systems/genetics
14.
Adv Biosyst ; 4(7): e2000040, 2020 07.
Article in English | MEDLINE | ID: mdl-32462817

ABSTRACT

Genetically encoded photoelectric silk that can convert photons to electrons (light to electricity) over a wide visible range in a self-power mode is reported. As silk is a versatile host material with electrical conductivity, biocompatibility, and processability, a photoelectric protein is genetically fused with silk by silkworm transgenesis. Specifically, mKate2, which is conventionally known as a far-red fluorescent protein, is used as a photoelectric protein. Characterization of the electrochemical and optical properties of mKate2 silk allows designing a photoelectric measurement system. A series of in situ photocurrent experiments support the sensitive and stable performance of photoelectric conversion. In addition, as a plasmonic nanomaterial with a broad spectral resonance, titanium nitride (TiN) nanoparticles are biologically hybridized into the silk glands, taking full advantage of the silkworms' open circulatory system as well as the absorption band of mKate2 silk. This biological hybridization via direct feeding of TiN nanoparticles further enhances the overall photoelectric conversion ability of mKate2 silk. It is envisioned that the biologically derived photoelectric protein, its ecofriendly scalable production by transgenic silkworms, and the bioassisted plasmonic hybridization can potentially broaden the biomaterial choices for developing next-generation biosensing, retina prosthesis, and neurostimulation applications.


Subject(s)
Animals, Genetically Modified , Bombyx/chemistry , Luminescent Proteins/chemistry , Nanoparticles/chemistry , Silk/chemistry , Titanium/chemistry , Animals , Bombyx/genetics , Bombyx/metabolism , Luminescent Proteins/biosynthesis , Luminescent Proteins/genetics , Silk/biosynthesis , Silk/genetics , Red Fluorescent Protein
15.
Nat Commun ; 11(1): 328, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949156

ABSTRACT

Counterfeit medicines are a fundamental security problem. Counterfeiting medication poses a tremendous threat to patient safety, public health, and the economy in developed and less developed countries. Current solutions are often vulnerable due to the limited security levels. We propose that the highest protection against counterfeit medicines would be a combination of a physically unclonable function (PUF) with on-dose authentication. A PUF can provide a digital fingerprint with multiple pairs of input challenges and output responses. On-dose authentication can verify every individual pill without removing the identification tag. Here, we report on-dose PUFs that can be directly attached onto the surface of medicines, be swallowed, and digested. Fluorescent proteins and silk proteins serve as edible photonic biomaterials and the photoluminescent properties provide parametric support of challenge-response pairs. Such edible cryptographic primitives can play an important role in pharmaceutical anti-counterfeiting and other security applications requiring immediate destruction or vanishing features.


Subject(s)
Counterfeit Drugs/administration & dosage , Counterfeit Drugs/adverse effects , Consumer Product Safety , Developing Countries , Drug Industry , Drug Utilization , Green Fluorescent Proteins , Humans , Public Health
16.
Asian Spine J ; 13(6): 976-983, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31352724

ABSTRACT

STUDY DESIGN: Retrospective case analyses. PURPOSE: To investigate the causes, diagnosis, and management of esophageal perforation, depending on the time of diagnosis. OVERVIEW OF LITERATURE: To date, few studies have addressed these issues. METHODS: A total of seven patients were included in this study. The patients were classified into three groups based on esophageal perforation diagnosis time: intraoperative (diagnosed during surgery), perioperative (diagnosed within 30 days postoperatively), and delayed (diagnosed >30 days postoperatively) groups. RESULTS: In the intraoperative group (N=2), infectious spondylitis was the main cause of esophageal perforation. Anterior plate and screw removal, followed by posterior instrumentation, was performed. The injured esophagus was managed by omentum flap repair in one patient and primary repair in one patient. In the perioperative group (N=2), revision surgery for infection and metal failure were the main causes of esophageal perforation. In both cases, food residue was drained on the third postoperative day. The injured esophagus was managed conservatively. In the delayed group (N=3), chronic irritation caused by metal failure was the main cause of esophageal perforation. In all patients, there was no associated infection. The anterior instrumentation was removed, and the two patients were treated by primary repair, and one patient was treated using sternocleidomastoid muscle flap. One patient in intraoperative group died of sepsis. CONCLUSIONS: The main cause of intraoperative esophageal perforation was esophageal adhesions because of infectious spondylitis. However, perioperative and delayed esophageal perforations were caused by chronic irritation because of metal failure. Anterior plate and screw removal was necessary, and posterior instrumentation and fusion may be considered, depending on the fusion status.

17.
Mitochondrial DNA B Resour ; 4(2): 2853-2854, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-33365759

ABSTRACT

Recently, a new silkworm strain with a peculiar larval marking and rare cocoon colour was bred in Korea for educational learning and exhibition. In order to obtain the genetic information of the newly bred strain, Chilseongjam Bombyx mori (Lepidoptera: Bombycidae), its complete mitochondrial genome (mitogenome) was sequenced. The mitogenome is 15,660 bp in length, contains a typical set of genes, and has gene arrangement and composition typical of Lepidoptera. However, the Chilseongjam strain mitogenome is 4-36 bp longer than 19 other strains originating from other countries and 16 bp shorter than the whole genome of a Korean Hukpyobeom strain. In particular, the Chilseongjam strain has an intergenic spacer sequence that is shorter than that of the Hukpyobeom strain at the tRNAHis and ND4 junction as it has fewer microsatellite-like AT repeats. Phylogenetic analyses conducted using a total of 21 silkworm strains originating from nine countries revealed a few subgroups with moderate-to-high nodal support (80-94%). The Korean Chilseongjam strain formed a relatively strong subgroup (85%) with a Japanese strain (J106) instead of the Korean Hukpyobeom strain.

18.
Adv Sci (Weinh) ; 5(6): 1700863, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29938168

ABSTRACT

Fluorescent proteins often result in phototoxicity and cytotoxicity, in particular because some red fluorescent proteins produce and release reactive oxygen species (ROS). The photogeneration of ROS is considered as a detrimental side effect in cellular imaging or is proactively utilized for ablating cancerous tissue. As ancient textiles or biomaterials, silk produced by silkworms can directly be used as fabrics or be processed into materials and structures to host other functional nanomaterials. It is reported that transgenic fusion of far-red fluorescent protein (mKate2) with silk provides a photosensitizer hybridization platform for photoinducible control of ROS. Taking advantage of green (visible) light activation, native and regenerated mKate2 silk can produce and release superoxide and singlet oxygen, in a comparable manner of visible light-driven plasmonic photocatalysis. Thus, the genetic expression of mKate2 in silk offers immediately exploitable and scalable photocatalyst-like biomaterials. It is further envisioned that mKate2 silk can potentially rule out hazardous concerns associated with foreign semiconductor photocatalytic nanomaterials.

19.
Nat Commun ; 9(1): 1194, 2018 03 19.
Article in English | MEDLINE | ID: mdl-29555903

ABSTRACT

The original PDF version of this Article contained errors in Equations 1 and 2. Both equations omitted all Γ terms. This has been corrected in the PDF version of the Article. The HTML version was correct from the time of publication.

20.
Nat Commun ; 9(1): 452, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29386508

ABSTRACT

Light in biological media is known as freely diffusing because interference is negligible. Here, we show Anderson light localization in quasi-two-dimensional protein nanostructures produced by silkworms (Bombyx mori). For transmission channels in native silk, the light flux is governed by a few localized modes. Relative spatial fluctuations in transmission quantities are proximal to the Anderson regime. The sizes of passive cavities (smaller than a single fibre) and the statistics of modes (decomposed from excitation at the gain-loss equilibrium) differentiate silk from other diffusive structures sharing microscopic morphological similarity. Because the strong reflectivity from Anderson localization is combined with the high emissivity of the biomolecules in infra-red radiation, silk radiates heat more than it absorbs for passive cooling. This collective evidence explains how a silkworm designs a nanoarchitectured optical window of resonant tunnelling in the physically closed structures, while suppressing most of transmission in the visible spectrum and emitting thermal radiation.


Subject(s)
Nanofibers/radiation effects , Silk/radiation effects , Animals , Bombyx , Light , Luminescence , Silk/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...