Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 847: 157482, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35901873

ABSTRACT

Catalytic oxidation is a feasible method for remediating volatile organic compounds (VOCs), due to its lower energy consumption and mineralization of VOCs into H2O and CO2. Noble metal-based catalysts are preferred for the catalytic oxidation of VOCs because of their superior activity, but they are usually deactivated by thermal aging which sinters the metal particles. Here, we report that Pt-Pd/Al2O3 thermally aged at 700-900 °C in air showed enhanced catalytic activity for toluene oxidation in humid conditions. There were electronic and structural changes in the thermally aged Pt-Pd/Al2O3, as confirmed by numerous analyses. Both Pt and Pd existed in a metallic rather than oxidized state without additional reduction steps. The noble metal particles were assembled to form Pt-Pd alloy, in the form of isolated Pd atoms surrounded by Pt atoms. This specific alloy structure was found to be crucial to the observed enhancement in catalytic toluene oxidation at low temperature.


Subject(s)
Toluene , Volatile Organic Compounds , Alloys/chemistry , Carbon Dioxide , Catalysis , Electronics , Metals , Oxidation-Reduction , Volatile Organic Compounds/chemistry
2.
ACS Appl Mater Interfaces ; 11(34): 31227-31236, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31374168

ABSTRACT

We report high experimental p-xylene (pX) selectivity in a pillar-layered metal-organic framework, DUT-8(Cu). Vapor- and liquid-phase adsorption experiments were carried out to confirm high pX selectivity and large pX uptakes in DUT-8(Cu). Grand canonical Monte Carlo simulation results show that the presence of DABCO ligands allows for the packing of pX molecules and is responsible for the pX selective nature of the material. The simulation also suggests that the presence of isooctane solvents in the liquid-phase experiments plays an essential role by lowering the adsorption of other xylene isomers, and leads to increased pX selectivity in the liquid-phase as compared to the vapor phase. Density functional theory simulations show that the preferential arrangement is due to the preferential adsorption of pX on the DABCO ligand and the preferential adsorption of isooctane over other xylene isomers.

3.
ACS Appl Mater Interfaces ; 10(32): 27521-27530, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30040880

ABSTRACT

Olefin/paraffin separation is an important and challenging issue because the two molecules have similar physicochemical properties. Although a couple of olefin adsorbents have been developed by introducing inorganic nanoparticles into metal-organic frameworks (MOFs), there has been no study on the development of an olefin adsorbent by introducing a certain organic functional group into a MOF. In this study, we posited that azo compounds could offer olefin/paraffin selectivity. We have revealed using first-principles calculations that the simplest aromatic azo compound (azobenzene, Azob) has an unusual propylene/propane selectivity due to special electrostatic interactions between Azob and propylene molecules. On the basis of this interesting discovery, we have synthesized a novel propylene adsorbent, MIL-101(Cr)_DAA, by grafting 4,4'-diaminoazobenzene (DAA) into open metal sites in a mesoporous MIL-101(Cr). Remarkably, MIL-101(Cr)_DAA exhibited enhanced propylene/propane selectivity as well as considerably higher propylene heat of adsorption compared to pristine MIL-101(Cr) while maintaining the high working capacity of MIL-101(Cr). This clearly indicates that azo compounds when introduced into MOFs can provide propylene selectivity. Moreover, MIL-101(Cr)_DAA showed good C3H6/C3H8 separation and easy regeneration performances from packed-bed breakthrough experiments and retained its propylene adsorption capacity even after exposure to air for 12 h. As far as we know, this is the first study that improves the olefin selectivity of MOF by postsynthetically introducing an organic functional group.

4.
J Chromatogr A ; 1529: 72-80, 2017 Dec 22.
Article in English | MEDLINE | ID: mdl-29132824

ABSTRACT

A novel power partial-discard (PPD) strategy was developed as a variant of the partial-discard (PD) operation to further improve the separation performance of the simulated moving bed (SMB) process. The PPD operation varied the flow rates of discard streams by introducing a new variable, the discard amount (DA) as well as varying the reported variable, discard length (DL), while the conventional PD used fixed discard flow rates. The PPD operations showed significantly improved purities in spite of losses in recoveries. Remarkably, the PPD operation could provide more enhanced purity for a given recovery or more enhanced recovery for a given purity than the PD operation. The two variables, DA and DL, in the PPD operation played a key role in achieving the desired purity and recovery. The PPD operations will be useful for attaining high-purity products with reasonable recoveries.


Subject(s)
Chromatography/methods , Adsorption , Chromatography/instrumentation , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...