Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 578
Filter
1.
Bioact Mater ; 40: 306-317, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38978806

ABSTRACT

Osteochondral tissue is a highly specialized and complex tissue composed of articular cartilage and subchondral bone that are separated by a calcified cartilage interface. Multilayered or gradient scaffolds, often in conjunction with stem cells and growth factors, have been developed to mimic the respective layers for osteochondral defect repair. In this study, we designed a hyaline cartilage-hypertrophic cartilage bilayer graft (RGD/RGDW) with chondrocytes. Previously, we demonstrated that RGD peptide-modified chondroitin sulfate cryogel (RGD group) is chondro-conductive and capable of hyaline cartilage formation. Here, we incorporated whitlockite (WH), a Mg2+-containing calcium phosphate, into RGD cryogel (RGDW group) to induce chondrocyte hypertrophy and form collagen X-rich hypertrophic cartilage. This is the first study to use WH to produce hypertrophic cartilage. Chondrocytes-laden RGDW cryogel exhibited significantly upregulated expression of hypertrophy markers in vitro and formed ectopic hypertrophic cartilage in vivo, which mineralized into calcified cartilage in bone microenvironment. Subsequently, RGD cryogel and RGDW cryogel were combined into bilayer (RGD/RGDW group) and implanted into rabbit osteochondral defect, where RGD layer supports hyaline cartilage regeneration and bioceramic-containing RGDW layer promotes calcified cartilage formation. While the RGD group (monolayer) formed hyaline-like neotissue that extends into the subchondral bone, the RGD/RGDW group (bilayer) regenerated hyaline cartilage tissue confined to its respective layer and promoted osseointegration for integrative defect repair.

2.
Plant Cell Rep ; 43(8): 198, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023775

ABSTRACT

KEY MESSAGE: Plants respond to environmental challenges by producing reactive species such as ROS and RNS, which play critical roles in signaling pathways that lead to adaptation and survival strategies. Understanding these pathways, as well as their detection methods and effects on plant development and metabolism, provides insight into increasing crop tolerance to combined stresses. Plants encounter various environmental stresses (abiotic and biotic) that affect plant growth and development. Plants sense biotic and abiotic stresses by producing different molecules, including reactive species, that act as signaling molecules and stimulate secondary messengers and subsequent gene transcription. Reactive oxygen and nitrogen species (ROS and RNS) are produced in both physiological and pathological conditions in the plasma membranes, chloroplasts, mitochondria, and endoplasmic reticulum. Various techniques, including spectroscopy, chromatography, and fluorescence methods, are used to detect highly reactive, short-half-life ROS and RNS either directly or indirectly. In this review, we highlight the roles of ROS and RNS in seed germination, root development, senescence, mineral nutrition, and post-harvest control. In addition, we provide information on the specialized metabolism involved in plant growth and development. Secondary metabolites, including alkaloids, flavonoids, and terpenoids, are produced in low concentrations in plants for signaling and metabolism. Strategies for improving crop performance under combined drought and pathogen stress conditions are discussed in this review.


Subject(s)
Plants , Reactive Nitrogen Species , Reactive Oxygen Species , Signal Transduction , Stress, Physiological , Reactive Oxygen Species/metabolism , Reactive Nitrogen Species/metabolism , Plants/metabolism , Plant Physiological Phenomena , Plant Development
3.
Food Chem ; 458: 140277, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38970957

ABSTRACT

This study analyzed the metabolite profiles and antioxidant capacities of two waxy and non-waxy Korean red rice accessions newly bred. Fifteen phenolic compounds were detected in the rice samples. Accession1 had high fatty acids, phytosterols, and vitamin E; accession3 had high vitamin E and phytosterol; and accession4 had a high total flavonoid. The correlation analysis findings from this study validated the positive association between all the metabolites and antioxidant activity. in silico results revealed that protocatechuic acid had a docking score of -9.541, followed by luteolin, quercetin, and caffeic acid, all of which had significant docking scores and a significant number of contacts. Similarly, molecular dynamics simulations showed that phytochemicals had root mean square deviation values of <2.8 Å with Keap 1, indicating better stability. This study provides valuable insights into potential directions for future investigations and improvements in the functional qualities of other colored rice varieties.

4.
J Pediatr Ophthalmol Strabismus ; : 1-5, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38940304

ABSTRACT

PURPOSE: To observe postoperative histological changes in the anterior part of the posterior fixation suture after a Faden operation in an animal model. METHODS: A posterior fixation suture was placed at two points 6 mm posterior to the insertion of the extraocular muscle on the superior rectus muscle of the right eye in eight rabbits. The superior rectus muscle of the left eye was used as a control. The eyes were enucleated and the anterior portion of the posterior fixation suture, including the myoscleral junction, was extracted 4 weeks after surgery. Postoperative adhesion was graded from 0 to 4 based on histologic findings (hematoxylin-eosin and Masson's trichrome staining). RESULTS: Histological evaluation revealed diffuse fibrosis at the myoscleral junction and the anterior part of the posterior fixation suture after the Faden operation. The graded scores for fibrosis, acute inflammation, chronic inflammation, and foreign body reactions in the Faden operation group were significantly higher than those in the control group (P < .05). Postoperative diffuse fibrosis of the myoscleral junction and anterior-to-posterior fixation sutures were observed in an animal model. CONCLUSIONS: Histologic changes may affect ocular alignment and motility, making reoperation unpredictable after the Faden procedure. [J Pediatr Ophthalmol Strabismus. 20XX;X(X):XX-XX.].

5.
Schizophr Res ; 270: 304-316, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38944977

ABSTRACT

Though categorized as separate illnesses, schizophrenia and autism are known to exhibit shared characteristics. This study explored the distinctions in clinical, cognitive, and functional characteristics among individuals with recent-onset psychosis, considering the severity of their autistic symptoms, involving longitudinal examinations. We analyzed 671 patients with recent-onset psychosis from Korean Early Psychosis Cohort Study (KEPS), and used the PANSS Autism Severity Score (PAUSS) to categorize patient into 'autistic', 'moderate', and 'non-autistic' groups. The autistic group had the highest rate of schizophrenia diagnosis, and the lowest incidence of comorbid psychiatric disorders. Schizophrenia diagnosis predicted membership of the autistic group. More severe autistic symptoms correlated with worse overall symptoms and functional outcomes, which significantly predicted membership of the autistic group. Cognitive impairments and emotional recognition difficulties increased with the severity of autistic symptoms. 2-year longitudinal assessments demonstrated that group differences in autistic features and overall symptoms, and functional outcomes remained consistent, and membership of the autistic group significantly predicted symptomatic remission and functional recovery. In conclusion, the presence of autistic symptoms has a significant impact on the overall symptomatology and functional capabilities. They are enduring attributes rather than temporary state variables, and serve as a significant predictor for both symptomatic and functional recovery.

6.
Biomed Opt Express ; 15(5): 3183-3190, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38855687

ABSTRACT

The feature issue of Biomedical Optics Express titled "Advances in Optical Biosensors for Biomedical Applications" presents a comprehensive collection of cutting-edge optical biosensor research. With the growing demand for sensitive, label-free, and real-time detection of biological analytes, optical biosensors have emerged as important devices in a wide range of biomedical applications, including medical diagnostics, bioanalysis, and personalised healthcare. This collection of 26 papers highlights recent advances and innovations in the development, design, and implementation of optical biosensors. The feature issue serves as an opportunity for disseminating ground-breaking findings, promoting new ideas, and inspiring further developments in optical biosensors for medical applications. The authors provide breakthrough technology, innovative approaches, and practical clinical applications that have the potential to revolutionize healthcare and biomedical research.

7.
Biosensors (Basel) ; 14(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38785723

ABSTRACT

The demand for easy-to-use, affordable, accessible, and reliable technology is increasing in biological, chemical, and medical research. Microfluidic devices have the potential to meet these standards by offering cost-effective, highly sensitive, and highly specific diagnostic tests with rapid performance and minimal sample volumes. Traditional microfluidic device fabrication methods, such as photolithography and soft lithography, are time-consuming and require specialized equipment and expertise, making them costly and less accessible to researchers and clinicians and limiting the applicability and potential of microfluidic devices. To address this, researchers have turned to using new low-cost materials, such as double-sided tape for microfluidic device fabrication, which offers simple and low-cost processes. The innovation of low-cost and easy-to-make microfluidic devices improves the potential for more devices to be transitioned from laboratories to commercialized products found in stores, offices, and homes. This review serves as a comprehensive summary of the growing interest in and use of double-sided tape-based microfluidic devices in the last 20 years. It discusses the advantages of using double-sided tape, the fabrication techniques used to create and bond microfluidic devices, and the limitations of this approach in certain applications.


Subject(s)
Microfluidics , Lab-On-A-Chip Devices , Cost-Benefit Analysis , Microfluidic Analytical Techniques , Equipment Design , Humans
8.
J Pers Med ; 14(4)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38673066

ABSTRACT

BACKGROUND: This study aimed to compare surgical outcomes between two new robotic single-site myomectomy (RSSM)-complementary techniques: coaxial robotic single-site myomectomy (Coaxial-RSSM) and hybrid robotic single-site myomectomy (Hybrid-RSSM). METHODS: Medical records for 132 women undergoing Coaxial-RSSM and 150 undergoing Hybrid-RSSM, consecutively, were retrospectively reviewed. Patient characteristics and surgical outcomes were assessed and compared after propensity score matching (PSM). RESULTS: In the outcomes of PSM, the Coaxial-RSSM group showed significantly reduced blood loss (79.71 vs. 163.75 mL, p < 0.001) and reduced hospital duration (4.18 ± 0.62 vs. 4.63 ± 0.90) relative to the Hybrid-RSSM group. Conversely, Hybrid-RSSM allowed for a shorter operative time compared with Coaxial-RSSM (119.19 vs. 156.01 min, p = 0.007). No conversions to conventional laparoscopy or laparotomy or any need for the multi-site robotic approach occurred in either group. Postoperative complications, including ileus, fever, and wound dehiscence, showed no statistically significant differences between the two groups. CONCLUSIONS: Blood loss was lower with Coaxial-RSSM, and operative time was shorter for Hybrid-RSSM. A follow-up prospective study is warranted for more comprehensive comparison of surgical outcomes between the two techniques.

9.
Vet Med (Praha) ; 69(3): 94-98, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38623156

ABSTRACT

Multiple primary malignant tumours (MPMTs) are multiple neoplasms with independent pathogenetic origins, placing great importance on the tumorigenesis and clinical treatment. However, due to the rare occurrence and diagnostic confusion, MPMTs have rarely been investigated in veterinary medicine. In this report, a 10-year-old intact female Maltese dog had MPMTs, consisting of two malignant tumours and one benign tumour each derived from a topographically different site: tubular carcinoma in the mammary glands, leiomyosarcoma in the uterus and sebaceous epithelioma in the cheek. The unique combination of MPMTs would be the first case in veterinary research to give insight into the diagnosis, disease characteristics, and surgical treatment.

10.
World Allergy Organ J ; 17(5): 100901, 2024 May.
Article in English | MEDLINE | ID: mdl-38638799

ABSTRACT

Background: Drug-induced hypersensitivity such as anaphylaxis is an important cause of drug-related morbidity and mortality. Cefaclor is a leading cause of drug induced type I hypersensitivity in Korea, but little is yet known about genetic biomarkers to predict this hypersensitivity reaction. We aimed to evaluate the possible involvement of genes in cefaclor induced type I hypersensitivity. Methods: Whole exome sequencing (WES) and HLA genotyping were performed in 43 patients with cefaclor induced type I hypersensitivity. In addition, homology modeling was performed to identify the binding forms of cefaclor to HLA site. Results: Anaphylaxis was the most common phenotype of cefaclor hypersensitivity (90.69%). WES results show that rs62242177 and rs62242178 located in LIMD1 region were genome-wide significant at the 5 × 10-8 significance level. Cefaclor induced type I hypersensitivity was significantly associated with HLA-DRB1∗04:03 (OR 4.61 [95% CI 1.51-14.09], P < 0.002) and HLA-DRB1∗14:54 (OR 3.86 [95% CI 1.09-13.67], P < 0.002). Conclusion: LIMD1, HLA-DRB1∗04:03 and HLA-DRB1∗14:54 may affect susceptibility to cefaclor induced type I hypersensitivity. Further confirmative studies with a larger patient population should be performed to ascertain the role of HLA-DRB1 and LIMD1 in the development of cefaclor induced hypersensitivity.

11.
Vet Med (Praha) ; 69(2): 61-66, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38550622

ABSTRACT

Here, we report a rare case of concurrent primary splenic lymphoma and mammary gland tumour (MGT) with polycystic ovaries in a 10-year-old, intact female Jindo dog. The dog was presented with multiple masses in the fourth left mammary gland, the largest of which measured 6 cm in diameter, along with enlargement of the left inguinal lymph node on physical examination. Ultrasonography, radiography, and computed tomography scans revealed polycystic ovaries and a mass in the tail of the spleen, after total splenectomy and mastectomy with ovariohysterectomy, histopathological examination identified splenic diffuse large B cell lymphoma and malignant myoepithelioma of the mammary gland was found. To our knowledge, this is the first report of the concurrent occurrence of splenic lymphoma, MGT, and polycystic ovaries in a dog.

12.
Micromachines (Basel) ; 15(3)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38542572

ABSTRACT

(K0.5Na0.5)NbO3 (KNN)-based ceramics have been extensively investigated as replacements for Pb(Zr, Ti)O3-based ceramics. KNN-based ceramics exhibit an orthorhombic structure at room temperature and a rhombohedral-orthorhombic (R-O) phase transition temperature (TR-O), orthorhombic-tetragonal (O-T) phase transition temperature (TO-T), and Curie temperature of -110, 190, and 420 °C, respectively. Forming KNN-based ceramics with a multistructure that can assist in domain rotation is one technique for enhancing their piezoelectric properties. This review investigates and introduces KNN-based ceramics with various multistructures. A reactive-templated grain growth method that aligns the grains of piezoceramics in a specific orientation is another approach for improving the piezoelectric properties of KNN-modified ceramics. The piezoelectric properties of the [001]-textured KNN-based ceramics are improved because their microstructures are similar to those of the [001]-oriented single crystals. The improvement in the piezoelectric properties after [001] texturing is largely influenced by the crystal structure of the textured ceramics. In this review, [001]-textured KNN-based ceramics with different crystal structures are investigated and systematically summarized.

13.
Heliyon ; 10(5): e26725, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38439881

ABSTRACT

This study looked at the application of multiple bulk stable isotope ratio analysis to accurately authenticate organic rice and counteract organic fraud within the expanding global organic market. Variations of δ13C, δ15N, δ18O, and δ34S in organic, pesticide-free, and conventional rice were assessed across different milling states (brown, milled, and bran). Individual stable isotope ratio alone such as δ15N demonstrated limited capacity to correctly differentiate organic, pesticide-free, and conventional rice. A support vector machine model-incorporating δ13C, δ15N, δ18O, and δ34S in milled rice-yielded overall predictability (95%) in distinguishing organic, pesticide-free, and conventional rice, where δ18O emerged as the pivotal variable based on the feature weights in the SVM model. These findings suggest the potential of multi-isotope and advanced statistical approaches in combating organic fraud and ensuring authenticity in the food supply chain.

15.
Int J Mol Sci ; 25(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38339135

ABSTRACT

To date, 14C tracer studies using accelerator mass spectrometry (AMS) have not yet resolved lipid-soluble analytes into individual lipoprotein density subclasses. The objective of this work was to develop a reliable method for lipoprotein separation and quantitative recovery for biokinetic modeling purposes. The novel method developed provides the means for use of small volumes (10-200 µL) of frozen plasma as a starting material for continuous isopycnic lipoprotein separation within a carbon- and pH-stable analyte matrix, which, following post-separation fraction clean up, created samples suitable for highly accurate 14C/12C isotope ratio determinations by AMS. Manual aspiration achieved 99.2 ± 0.41% recovery of [5-14CH3]-(2R, 4'R, 8'R)-α-tocopherol contained within 25 µL plasma recovered in triacylglycerol rich lipoproteins (TRL = Chylomicrons + VLDL), LDL, HDL, and infranatant (INF) from each of 10 different sampling times for one male and one female subject, n = 20 total samples. Small sample volumes of previously frozen plasma and high analyte recoveries make this an attractive method for AMS studies using newer, smaller footprint AMS equipment to develop genuine tracer analyses of lipophilic nutrients or compounds in all human age ranges.


Subject(s)
Lipoproteins , alpha-Tocopherol , Male , Female , Humans , Triglycerides , Carbon , Mass Spectrometry , Lipoproteins, VLDL , Lipoproteins, LDL
16.
Int J Stem Cells ; 17(2): 204-211, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38246658

ABSTRACT

With recent advances in adeno-associated virus (AAV)-based gene therapy, efficacy and toxicity screening have become essential for developing gene therapeutic drugs for retinal diseases. Retinal organoids from human pluripotent stem cells (hPSCs) offer a more accessible and reproducible human test platform for evaluating AAV-based gene therapy. In this study, hPSCs were differentiated into retinal organoids composed of various types of retinal cells. The transduction efficiencies of AAV2 and AAV8, which are widely used in clinical trials of inherited retinal diseases, were analyzed using retinal organoids. These results suggest that retinal organoids derived from hPSCs serve as suitable screening platforms owing to their diverse retinal cell types and similarity to the human retina. In summary, we propose an optimal stepwise protocol that includes the generation of retinal organoids and analysis of AAV transduction efficacy, providing a comprehensive approach for evaluating AAV-based gene therapy for retinal diseases.

17.
Plant Physiol Biochem ; 207: 108370, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38271861

ABSTRACT

Nanotechnology provides distinct benefits to numerous industrial and commercial fields, and has developed into a discipline of intense interest to researchers. Nanoparticles (NPs) have risen to prominence in modern agriculture due to their use in agrochemicals, nanofertilizers, and nanoremediation. However, their potential negative impacts on soil and water ecosystems, as well as plant growth and physiology, have caused concern for researchers and policymakers. Concerns have been expressed regarding the ecological consequences and toxicity effects associated with nanoparticles as a result of their increased production and usage. Moreover, the accumulation of nanoparticles in the environment poses a risk, not only because of the possibility of plant damage but also because nanoparticles may infiltrate the food chain. In this review, we have documented the beneficial and detrimental effects of NPs on seed germination, shoot and root growth, plant biomass, and nutrient assimilation. Nanoparticles exert toxic effects by inducing ROS generation and stimulating cytotoxic and genotoxic effects, thereby leading to cell death in several plant species. We have provided possible mechanisms by which nanoparticles induce toxicity in plants. In addition to the toxic effects of NPs, we highlighted the importance of nanomaterials in the agricultural sector. Thus, understanding the structure, size, and concentration of nanoparticles that will improve plant growth or induce plant cell death is essential. This updated review reveals the multifaceted connection between nanoparticles, soil and water pollution, and plant biology in the context of agriculture.


Subject(s)
Ecosystem , Nanoparticles , Plant Development , Nanoparticles/toxicity , Photosynthesis , Agriculture , Plants , Soil
18.
ACS Appl Mater Interfaces ; 16(6): 7875-7882, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38266383

ABSTRACT

This study proposes the use of physical unclonable functions employing circularly polarized light emission (CPLE) from nematic liquid crystal (NLC) ordering directed by helical nanofilaments in a mixed system composed of a calamitic NLC mixture and a bent-core molecule. To achieve this, an intrinsically nonemissive NLC is blended with a high concentration of a luminescent rod-like dye, which is miscible up to 10 wt % in the calamitic NLC without a significant decrease in the degree of alignment. The luminescence dissymmetry factor of CPLEs in the mixed system strongly depends on the degree of alignment of the dye-doped NLCs. Furthermore, the mixed system prepared in this study exhibits two randomly generated chiral domains with CPLEs of opposite signs. These chiral domains are characterized not only by their CPLE performances but also by their ability to generate random patterns up to several millimeters, making them promising candidates for high-performance secure authentication applications.

19.
Sci Rep ; 14(1): 135, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167981

ABSTRACT

This study aims to characterize levels of molds, bacteria, and environmental pollutants, identify the associations between indoor mold and dampness exposures and childhood allergic diseases, including asthma, allergic rhinitis, atopic dermatitis, using three different exposure assessment tools. A total of 50 children with their parents who registered in Seoul and Gyeonggi-do in Korea participated in this study. We collated the information on demographic and housing characteristics, environmental conditions, and lifestyle factors using the Korean version of the International Study of Asthma and Allergies in Childhood questionnaire. We also collected environmental monitoring samples of airborne molds and bacteria, total volatile organic compounds, formaldehyde, and particulate matter less than 10 µm. We evaluated and determined water damage, hidden dampness, and mold growth in dwellings using an infrared (IR) thermal camera and field inspection. Univariate and multivariate regression analyses were performed to evaluate the associations between prevalent allergic diseases and exposure to indoor mold and dampness. Indoor mold and bacterial levels were related to the presence of water damage in dwellings, and the mean levels of indoor molds (93.4 ± 73.5 CFU/m3) and bacteria (221.5 ± 124.2 CFU/m3) in water-damaged homes were significantly higher than those for molds (82.0 ± 58.7 CFU/m3) and for bacteria (152.7 ± 82.1 CFU/m3) in non-damaged dwellings (p < 0.05). The crude odds ratios (ORs) of atopic dermatitis were associated with < 6th floor (OR = 3.80), and higher indoor mold (OR = 6.42) and bacterial levels (OR = 6.00). The crude ORs of allergic diseases, defined as a group of cases who ever suffered from two out of three allergic diseases, e.g., asthma and allergic rhinitis, and allergic rhinitis were also increased by 3.8 and 9.3 times as large, respectively, with water damage (+) determined by IR camera (p < 0.05). The adjusted OR of allergic rhinitis was significantly elevated by 10.4 times in the water-damaged dwellings after adjusting age, sex, and secondhand smoke. Therefore, a longitudinal study is needed to characterize dominant mold species using DNA/RNA-based sequencing techniques and identify a causal relationship between mold exposure and allergic diseases in the future.


Subject(s)
Air Pollution, Indoor , Asthma , Dermatitis, Atopic , Rhinitis, Allergic , Child , Humans , Dermatitis, Atopic/etiology , Dermatitis, Atopic/complications , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Asthma/etiology , Asthma/complications , Fungi , Rhinitis, Allergic/etiology , Seoul
20.
Rev. psicol. deport ; 33(1): 68-82, 2024. ilus, tab, graf
Article in English | IBECS | ID: ibc-231716

ABSTRACT

This study seeks to evaluate the ability of machine learning methods to predict the dry weight of chronic hemodialysis athletes. The researcher has reached out to kidney patients who have had to give up sports and athletic careers due to chronic hemodialysis. This paper explores the development of medical prediction algorithms that combine image analysis with numerical data, which is widely used in the field of medicine. This deep learning method is widely employed to enhance the treatment of athletes who have kidney conditions. Regular hemodialysis is crucial for maintaining the health of athletes who have kidney disease. Accurately predicting dry weight is a crucial step in the process of performing hemodialysis. In this context, dry weight refers to the optimal moisture level at which excess water is effectively eliminated from the patient (athletes) through ultrafiltration during hemodialysis. In order to accurately determine the optimal amount of hemodialysis, predicting the correct dry weight is crucial. However, this task is quite challenging and often yields inaccurate results due to the extensive data analysis required by experienced nephrologists. This paper presents a deep learning methodology utilising the Artificial Neural Network (ANN) approach to efficiently address these issues. The proposed method aims to predict dry weight rapidly by analysing image values and clinical data from X-ray images obtained during routine check-ups. The current study has several theoretical and practical implications. This study contributes to the existing literature on chronic hemodialysis and the dry weight of athletes, offering valuable insights to sports health organisations. By doing so, these organisations can effectively prepare to proactively evaluate the atypical health conditions of athletes.(AU)


Subject(s)
Humans , Male , Female , Athletes , Psychology, Sports , Sports , Sports Medicine , Renal Dialysis , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...