Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
ACS Omega ; 8(45): 42689-42698, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38024713

ABSTRACT

Material-specific electrocatalytic activity and electrode design are essential factors in evaluating the performance of electrochemical sensors. Herein, the technique described involves electrospinning manganese-based metal-organic frameworks (Mn-MOFs) to develop MnOx nanostructures embedded in carbon nanofibers. The resulting structure features an electrocatalytic material for an enzyme-free glucose sensor. The elemental composition, morphology, and microstructure of the fabricated electrodes materials were characterized by using energy-dispersive X-ray spectroscopy (EDX), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Cyclic voltammetry (CV) and amperometric i-t (current-time) techniques are characteristically employed to assess the electrochemical performance of materials. The MOF MnOx-CNFs nanostructures significantly improve detection performance for nonenzymatic amperometric glucose sensors, including a broad linear range (0 mM to 9.1 mM), high sensitivity (4080.6 µA mM-1 cm-2), a low detection limit (0.3 µM, S/N = 3), acceptable selectivity, outstanding reproducibility, and stability. The strategy of metal and metal oxide-integrated CNF nanostructures based on MOFs opens interesting possibilities for the development of high-performance electrochemical sensors.

2.
ACS Biomater Sci Eng ; 9(2): 1002-1010, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36629494

ABSTRACT

Carbon dots (CDs) are considered a potential substance for use in biomarker applications due to their exceptional light stability. However, there are several unsolved uncertainties about CD toxicity in vitro and in vivo. In this study, a redesigned derivative of the natural polysaccharide inulin is connected with boron-doped amine-functionalized carbon dots (In@BN-CDs) through carbodiimide coupling to improve the biocompatibility of the nanoformulation. The toxicity and biodistribution of ln@BN-CDs in vivo and in vitro were explored in detail. The In@BN-CDs were tested after a single inhalation dosage of 10, 7, 5, 3, and 1 mg/kg. We explored a dose- and time-dependent technique of collecting blood samples and then centrifuged the blood samples and obtained serum samples, which were then analyzed for fluorescence inspection; findings showed that the fluorescence intensity decreased with time. Similarly, In@BN-CDs were effectively used as in vitro toxicity and fluorescent probes for cellular imaging in living cells due to their biocompatibility and cell membrane accessibility. The biocompatibility and efficacy of In@BN-CDs as fluorescent imaging agents have been demonstrated. The data suggest that the usage of In@BN-CDs in vitro and in vivo should be examined.


Subject(s)
Boron , Inulin , Tissue Distribution , Carbon , Fluorescent Dyes
3.
J Emerg Med ; 64(1): 70-73, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36464549

ABSTRACT

BACKGROUND: Infected aortic aneurysm is a relatively rare disease with significant morbidity and mortality. Because of its deeper position, patients with infected aortic arch aneurysms may present with only fever and other vague symptoms, such as weakness, fatigue, dizziness, anorexia, and functional decline. It is difficult confirm a diagnosis that is based solely on history or physical examination, and it may only be apparent on imaging studies. CASE REPORT: We present a brief case report of a patient presenting to the emergency department with unexplained fever who was diagnosed with emphysematous salmonella-infected aneurysm of the aortic arch. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Infected aortic arch aneurysm is an extremely unusual disease entity that emergency physicians encounter. Because of the high mortality and morbidity of this catastrophic disease, an infected aortic aneurysm should be considered as a possible diagnosis in patients with persistent fever and vague symptoms without a specific infection focus. To avoid delayed diagnosis, emergency physicians should be aware of infected aortic arch aneurysm.


Subject(s)
Aneurysm, Infected , Aortic Aneurysm, Thoracic , Aortic Aneurysm , Humans , Salmonella
4.
Medicine (Baltimore) ; 101(28): e29355, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35839015

ABSTRACT

RATIONALE: Sodium nitrite is a potent oxidizing agent that impairs oxygen transport and delivery through methemoglobin formation. Clinical manifestations are known to induce methemoglobinemia, dysrhythmia, hypotension, and even death. While accidental intoxication of sodium nitrite by contaminated water and food has previously occurred, there has been a substantial upsurge in suicide intoxication in recent years. PATIENT CONCERNS: We present case reports of 2 patients who attempted suicide by sodium nitrite after ordering a "suicide powder" on the internet market. They were brought to the emergency department after attempting suicide by ingesting sodium nitrite. They experienced dyspnea, cyanosis, and mild nausea. DIAGNOSIS: Based on their history and blood tests, methemoglobinemia was initially diagnosed. INTERVENTIONS AND OUTCOMES: The patients received methylene blue antidotal therapy in the emergency department. The patients were discharged after neuropsychiatric evaluation and treatment for mental illness, suicidal ideation, and suicide attempts. They informed us of how simple and easy it was for them to buy sodium nitrite for suicidal purposes. LESSONS: With widely shared information on the usage of sodium nitrite for suicide and the absence of proper regulation, the incidence of acute poisoning will increase. This increases physicians' chances of encountering unexplained cyanosis and methemoglobinemia. Clinical suspicion of sodium nitrite intoxication is warranted in cases of unexplained cyanosis or methemoglobinemia. We want to highlight how simple and easy it is to buy sodium nitrite for suicidal purposes.


Subject(s)
Methemoglobinemia , Sodium Nitrite , Cyanosis/complications , Humans , Internet , Methemoglobinemia/chemically induced , Methemoglobinemia/diagnosis , Methemoglobinemia/drug therapy , Methylene Blue/therapeutic use , Suicide, Attempted
5.
Emerg Med Int ; 2022: 7994866, 2022.
Article in English | MEDLINE | ID: mdl-35669167

ABSTRACT

Introduction: This study aimed to establish a predictive model that includes physiological parameters and identify independent risk factors for severe injuries in bicycle rider accidents. Methods: This was a multicenter observational study. For four years, we included patients with bicycle rider injuries in the Emergency Department-Based Injury In-depth Surveillance database. In this study, we regarded ICD admission or in-hospital mortality as parameters of severe trauma. Univariate and multivariate logistic regression analyses were performed to assess risk factors for severe trauma. A receiver operating characteristic (ROC) curve was generated to evaluate the performance of the regression model. Results: This study included 19,842 patients, of whom 1,202 (6.05%) had severe trauma. In multivariate regression analysis, male sex, older age, alcohol use, motor vehicle opponent, load state (general and crosswalk), blood pressure, heart rate, respiratory rate, and Glasgow Coma Scale were the independent factors for predicting severe trauma. In the ROC analysis, the area under the ROC curve for predicting severe trauma was 0.848 (95% confidence interval: 0.830-0.867). Conclusion: We identified independent risk factors for severe trauma in bicycle rider accidents and believe that physiologic parameters contribute to enhancing prediction ability.

6.
Mol Med Rep ; 25(1)2022 01.
Article in English | MEDLINE | ID: mdl-34796906

ABSTRACT

Although multi­organ dysfunction is associated with the survival rate following cardiac arrest (CA), the majority of studies to date have focused on hearts and brains, and few studies have considered renal failure. The objective of the present study, therefore, was to examine the effects of therapeutic hypothermia on the survival rate, pathophysiology and antioxidant enzymes in rat kidneys following asphyxial CA. Rats were sacrificed one day following CA. The survival rate, which was estimated using Kaplan­Meier analysis, was 42.9% one day following CA. However, hypothermia, which was induced following CA, significantly increased the survival rate (71.4%). In normothermia rats with CA, the serum blood urea nitrogen level was significantly increased one day post­CA. In addition, the serum creatinine level was significantly increased one day post­CA. However, in CA rats exposed to hypothermia, the levels of urea nitrogen and creatinine significantly decreased following CA. Histochemical staining revealed a significant temporal increase in renal injury after the normothermia group was subjected to CA. However, renal injury was significantly decreased in the hypothermia group. Immunohistochemical analysis of the kidney revealed a significant decrease in antioxidant enzymes (copper­zinc superoxide dismutase, manganese superoxide dismutase, glutathione peroxidase and catalase) with time in the normothermia group. However, in the hypothermia group, these enzymes were significantly elevated following CA. Collectively, the results revealed that renal dysfunction following asphyxial CA was strongly associated with the early survival rate and therapeutic hypothermia reduced renal injury via effective antioxidant mechanisms.


Subject(s)
Acute Kidney Injury/drug therapy , Antioxidants/pharmacology , Asphyxia/complications , Asphyxia/therapy , Heart Arrest/therapy , Hypothermia, Induced/methods , Kidney/drug effects , Kidney/injuries , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Animals , Blood Urea Nitrogen , Brain/physiopathology , Creatinine , Disease Models, Animal , Heart/physiopathology , Hypothermia , Kidney/pathology , Kidney/physiopathology , Male , Rats , Rats, Sprague-Dawley , Survival Rate
7.
Front Plant Sci ; 12: 764100, 2021.
Article in English | MEDLINE | ID: mdl-34777447

ABSTRACT

Sweetpotato is an emerging food crop that ensures food and nutrition security in the face of climate change. Alpha-linoleic acid (ALA) is one of the key factors affecting plant stress tolerance and is also an essential nutrient in humans. In plants, fatty acid desaturase 8 (FAD8) synthesizes ALA from linoleic acid (LA). Previously, we identified the cold-induced IbFAD8 gene from RNA-seq of sweetpotato tuberous roots stored at low-temperature. In this study, we investigated the effect of IbFAD8 on the low-temperature storage ability and ALA content of the tuberous roots of sweetpotato. Transgenic sweetpotato plants overexpressing IbFAD8 (TF plants) exhibited increased cold and drought stress tolerance and enhanced heat stress susceptibility compared with non-transgenic (NT) plants. The ALA content of the tuberous roots of TF plants (0.19 g/100 g DW) was ca. 3.8-fold higher than that of NT plants (0.05 g/100 g DW), resulting in 8-9-fold increase in the ALA/LA ratio in TF plants. Furthermore, tuberous roots of TF plants showed better low-temperature storage ability compared with NT plants. These results indicate that IbFAD8 is a valuable candidate gene for increasing the ALA content, environmental stress tolerance, and low-temperature storage ability of sweetpotato tuberous roots via molecular breeding.

9.
Plant Physiol Biochem ; 167: 577-585, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34461554

ABSTRACT

Sweetpotato (Ipomoea batatas [L.] Lam) is a prospective food crop that ensures food and nutrition security under the dynamic changes in global climate. Peroxidase (POD) is a multifunctional enzyme involved in diverse plant physiological processes, including stress tolerance and cell wall lignification. Although various POD genes were cloned and functionally characterized in sweetpotato, the role of POD in lignification and low-temperature storage ability of sweetpotato tuberous roots is yet to be investigated. In this study, we isolated the cold-induced lignin forming peroxidase (IbLfp) gene of sweetpotato, and analyzed its physiological functions. IbLfp showed more predominant expression in fibrous roots than in other tissues. Moreover, IbLfp expression was up-regulated in leaves and roots under cold stress, and was altered by other abiotic stresses. Tuberous roots of transgenic sweetpotato lines overexpressing IbLfp (LP lines) showed improved tolerance to low temperature, with lower malondialdehyde and hydrogen peroxide contents than non-transgenic sweetpotato plants under cold stress. The enhanced cold tolerance of LP lines could be attributed to the increased basal activity of POD, which is involved in reactive oxygen species (ROS) scavenging. Moreover, greater accumulation of lignin could also contribute to the enhanced cold tolerance of LP lines, as lignin acts as a protective barrier against invading pathogens, which is a secondary symptom of chilling injury in sweetpotato. Overall, the results of this study enhance our understanding of the function of POD in low-temperature storage of sweetpotato tuberous roots.


Subject(s)
Ipomoea batatas , Cold-Shock Response , Gene Expression Regulation, Plant , Ipomoea batatas/genetics , Peroxidases , Plants, Genetically Modified , Prospective Studies , Temperature
10.
Plant Physiol Biochem ; 167: 420-429, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34411781

ABSTRACT

Tocopherols are lipid-soluble compounds regarded as vitamin E compounds and they function as antioxidants in scavenging lipid peroxyl radicals and quenching reactive oxygen species (ROS). In our previous studies, we isolated five tocopherol biosynthesis genes from sweetpotato (Ipomoea batatas [L.] Lam) plants including 4-hydroxyphenylpyruvate dioxygenase (IbHPPD). HPPD is the first regulatory enzyme in vitamin E biosynthesis and serves to catalyze in the first steps α-tocopherol and plastoquinone biosynthesis by converting 4-hydroxyphenylpyruvate (HPP) to homogentisic acid (HGA). In this study, we generated transgenic sweetpotato plants overexpressing IbHPPD under the control of cauliflower mosaic virus (CaMV) 35S promoter (referred to as HP plants) via Agrobacterium-mediated transformation to understand the function of IbHPPD in sweetpotato. Three transgenic lines (HP3, HP14 and HP15) with high transcript levels of IbHPPD were selected for further characterization. Compared with non-transgenic (NT) plants, HP plants exhibited enhanced tolerance to multiple environmental stresses, including salt, drought, and oxidative stresses. In addition, HP plants showed increased tolerance to the herbicide sulcotrione, which is involved in the inhibition of the HPPD. Interestingly, after stress treatments, HP plants also showed higher abscisic acid (ABA) contents than NT plants. Under dehydrated condition, HP plants displayed an elevated α-tocopherol content to 19-27% in leaves compared with NT plants. These results indicate that increased abiotic stress tolerance in HP plants is related to inducing enhancement of α-tocopherol and ABA contents.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Ipomoea batatas , 4-Hydroxyphenylpyruvate Dioxygenase/genetics , Droughts , Gene Expression Regulation, Plant , Ipomoea batatas/genetics , Plants, Genetically Modified/genetics , Salt Tolerance , Stress, Physiological/genetics
11.
Exp Ther Med ; 22(3): 1031, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34373717

ABSTRACT

The present study aimed to investigate the renoprotective effect of therapeutic hypothermia (TH) on renal ischemia-reperfusion injury (RI/RI) induced by asphyxial cardiac arrest (CA) in rats. A total of 48 male rats were randomly divided into five groups: i) Sham (n=6); ii) Normothermia + CA (Normo.) (n=14); iii) Normo. and 2 h of TH after return of spontaneous circulation (ROSC) (n=12); iv) Normo. and 4 h of TH after ROSC (n=9); and v) Normo. and 6 h of TH after ROSC (n=7). All rats except the Sham group underwent asphyxia CA and were sacrificed 1 day after ROSC. The survival rate increased from 42.8% in the Normo. group to 50, 66.6 and 85.7% in the groups with 2, 4 and 6 h of TH after CA, respectively. TH attenuated the histopathological changes of the renal tissues following ROSC and the levels of blood urea nitrogen, serum creatinine and malondialdehyde in renal tissues. On immunohistochemistry, the relative optical density of nuclear erythroid-related factor-2 (Nrf2) and heme oxygenase (HO-1) expression in renal tissues increased in the Normo. group compared with that in the Sham group and exhibited further significant increases at 6 h of TH after ROSC. In conclusion, TH attenuated renal injury and increased the expression of Nrf2 and HO-1 in a TH treatment time-dependent manner.

12.
Acta Cir Bras ; 36(6): e360607, 2021.
Article in English | MEDLINE | ID: mdl-34287609

ABSTRACT

PURPOSE: To investigate the role of Nrf2/HO-1 in renal histopathological ailments time-dependently in asphyxial cardiac arrest (CA) rat model. METHODS: Eighty-eight Sprague Dawley male rats were divided into five groups of eight rats each. Asphyxial CA was induced in all the experimental rats except for the sham group. The rats were sacrificed at 6 hours, 12 hours, one day and two days post-CA. Serum blood urea nitrogen (BUN), creatinine (Crtn) and malondialdehyde from the renal tissues were evaluated. Hematoxylin and eosin and periodic acid-Schiff staining were done to evaluate the renal histopathological changes in the renal cortex. Furthermore, Nrf2/HO-1 immunohistochemistry (ihc) and western blot analysis were performed after CA. RESULTS: The survival rate of rats decreased in a time-dependent manner: 66.6% at 6 hours, 50% at 12 hours, 38.1% in one day, and 25.8% in two days. BUN and serum Crtn markedly increased in CA-operated groups. Histopathological ailments of the renal cortical tissues increased significantly from 6 hours until two days post-CA. Furthermore, Nrf2/HO-1 expression level significantly increased at 6 hours, 12 hours, and one day. CONCLUSIONS: The survival rate decreased time-dependently, and Nrf/HO-1 expression increased from 6 hours with the peak times at 12 hours, and one day post-CA.


Subject(s)
Acute Kidney Injury , Heart Arrest , Animals , Heme Oxygenase (Decyclizing) , Kidney , Male , NF-E2-Related Factor 2 , Rats , Rats, Sprague-Dawley
13.
Plant Physiol Biochem ; 166: 549-557, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34174660

ABSTRACT

Lignin is associated with cell wall rigidity, water and solute transport, and resistance to diverse stresses in plants. Lignin consists of polymerized monolignols (p-coumaryl, coniferyl, and sinapyl alcohols), which are synthesized by cinnamyl alcohol dehydrogenase (CAD) in the phenylpropanoid pathway. We previously investigated cold-induced IbCAD1 expression by transcriptome profiling of cold-stored tuberous roots of sweetpotato (Ipomoea batatas [L.] Lam). In this study, we confirmed that IbCAD1 expression levels depended on the sweetpotato root type and were strongly induced by several abiotic stresses. We generated transgenic sweetpotato plants overexpressing IbCAD1 (TC plants) to investigate CAD1 physiological functions in sweetpotato. TC plants displayed lower root weights and lower ratios of tuberous roots to pencil roots than non-transgenic (NT) plants. The lignin contents in tuberous roots of NT and TC plants differed slightly, but these differences were not significant. By contrast, monolignol levels and syringyl (S)/guaiacyl (G) ratios were higher in TC plants than NT plants, primarily owing to syringyl unit accumulation. Tuberous roots of TC plants displayed enhanced low-temperature (4 °C) storage with lower malondialdehyde and H2O2 contents than NT plants. We propose that high monolignol levels in TC tuberous roots served as substrates for increased peroxidase activity, thereby enhancing antioxidation capacity against cold stress-induced reactive oxygen species. Increased monolignol contents and/or increased S/G ratios might contribute to pathogen-induced stress tolerance as a secondary chilling-damage response in sweetpotato. These results provide novel information about CAD1 function in cold stress tolerance and root formation mechanisms in sweetpotato.


Subject(s)
Ipomoea batatas , Cold-Shock Response , Gene Expression Regulation, Plant , Hydrogen Peroxide , Ipomoea batatas/genetics , Phenotype , Plants, Genetically Modified , Temperature
14.
J Am Coll Emerg Physicians Open ; 2(3): e12459, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34179882
16.
Antioxidants (Basel) ; 10(1)2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33406723

ABSTRACT

Carotenoids function as photosynthetic accessory pigments, antioxidants, and vitamin A precursors. We recently showed that transgenic sweetpotato calli overexpressing the mutant sweetpotato (Ipomoea batatas [L.] Lam) Orange gene (IbOr-R96H), which carries a single nucleotide polymorphism responsible for Arg to His substitution at amino acid position 96, exhibited dramatically higher carotenoid content and abiotic stress tolerance than calli overexpressing the wild-type IbOr gene (IbOr-WT). In this study, we generated transgenic sweetpotato plants overexpressing IbOr-R96H under the control of the cauliflower mosaic virus (CaMV) 35S promoter via Agrobacterium-mediated transformation. The total carotenoid contents of IbOr-R96H storage roots (light-orange flesh) and IbOr-WT storage roots (light-yellow flesh) were 5.4-19.6 and 3.2-fold higher, respectively, than those of non-transgenic (NT) storage roots (white flesh). The ß-carotene content of IbOr-R96H storage roots was up to 186.2-fold higher than that of NT storage roots. In addition, IbOr-R96H plants showed greater tolerance to heat stress (47 °C) than NT and IbOr-WT plants, possibly because of higher DPPH radical scavenging activity and ABA contents. These results indicate that IbOr-R96H is a promising strategy for developing new sweetpotato cultivars with improved carotenoid contents and heat stress tolerance.

17.
J Emerg Med ; 60(2): 245-247, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33059993

Subject(s)
Face , Mouth , Humans , Male
18.
Acta cir. bras ; 36(6): e360607, 2021. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1284911

ABSTRACT

ABSTRACT Purpose To investigate the role of Nrf2/HO-1 in renal histopathological ailments time-dependently in asphyxial cardiac arrest (CA) rat model. Methods Eighty-eight Sprague Dawley male rats were divided into five groups of eight rats each. Asphyxial CA was induced in all the experimental rats except for the sham group. The rats were sacrificed at 6 hours, 12 hours, one day and two days post-CA. Serum blood urea nitrogen (BUN), creatinine (Crtn) and malondialdehyde from the renal tissues were evaluated. Hematoxylin and eosin and periodic acid-Schiff staining were done to evaluate the renal histopathological changes in the renal cortex. Furthermore, Nrf2/HO-1 immunohistochemistry (ihc) and western blot analysis were performed after CA. Results The survival rate of rats decreased in a time-dependent manner: 66.6% at 6 hours, 50% at 12 hours, 38.1% in one day, and 25.8% in two days. BUN and serum Crtn markedly increased in CA-operated groups. Histopathological ailments of the renal cortical tissues increased significantly from 6 hours until two days post-CA. Furthermore, Nrf2/HO-1 expression level significantly increased at 6 hours, 12 hours, and one day. Conclusions The survival rate decreased time-dependently, and Nrf/HO-1 expression increased from 6 hours with the peak times at 12 hours, and one day post-CA.


Subject(s)
Animals , Male , Rats , Acute Kidney Injury , Heart Arrest , Rats, Sprague-Dawley , NF-E2-Related Factor 2 , Heme Oxygenase (Decyclizing) , Kidney
19.
J Therm Biol ; 94: 102761, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33293002

ABSTRACT

Cardiac arrest (CA) is a leading cause of mortality worldwide. Most of post-resuscitation related deaths are due to post-cardiac arrest syndrome (PCAS). After cardiopulmonary resuscitation (CPR), return of spontaneous circulation (ROSC) leads to renal ischemia-reperfusion injury, also known as PCAS. Many studies have focused on brain and heart injuries after ROSC, but renal failure has largely been ignored. Therefore, we investigated the protective effects of therapeutic hypothermia (TH) on asphyxial CA-induced renal injury in rats. Thirty rats were randomly divided into five groups: 1) the control group (sham); 2) the normothermic CA (nor.); 3) a normothermic CA group that received TH immediately within 2 h after CPR (Hypo. 2 hrs); 4) a normothermic CA group that received TH within 4 h after CPR (Hypo. 4 hrs); and 5) a normothermia CA group that received TH within 6 h after CPR (Hypo. 6 h). One day after CPR, all rats were sacrificed. Compared with the normothermic CA group, the TH groups demonstrated significantly increased survival rate (P < 0.05); decreased serum blood urea nitrogen, creatinine, and lactate dehydrogenase levels; and lower histological damage degree and malondialdehyde concentration in their renal tissue. Terminal deoxynucleotidyl transferase dUTP nick end labeling stain revealed that the number of apoptotic cells significantly decreased after 4 h and 6 h of TH compared to the results seen in the normothermic CA group. Moreover, TH downregulated the expression of cyclooxygenase-2 in the renal cortex compared to the normothermic CA group one day after CPR. These results suggest that TH exerts anti-apoptotic, anti-inflammatory, and anti-oxidative effects immediately after ROSC that protect against renal injury.


Subject(s)
Heart Arrest/therapy , Hypothermia, Induced , Kidney Diseases/therapy , Animals , Asphyxia/complications , Blood Urea Nitrogen , Creatinine/blood , Cyclooxygenase 2/metabolism , Heart Arrest/blood , Heart Arrest/etiology , Heart Arrest/metabolism , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , L-Lactate Dehydrogenase/blood , Male , Malondialdehyde/metabolism , Rats, Sprague-Dawley
20.
J Am Coll Emerg Physicians Open ; 1(4): 670-671, 2020 Aug.
Article in English | MEDLINE | ID: mdl-33000095
SELECTION OF CITATIONS
SEARCH DETAIL
...