Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37571473

ABSTRACT

Long-Range (LoRa) devices have been deployed in many Internet of Things (IoT) applications due to their ability to communicate over long distances with low power consumption. The scalability and communication performance of the LoRa systems are highly dependent on the spreading factor (SF) and channel allocations. In particular, it is important to set the SF appropriately according to the distance between the LoRa device and the gateway since the signal reception sensitivity and bit rate depend on the used SF, which are in a trade-off relationship. In addition, considering the surge in the number of LoRa devices recently, the scalability of LoRa systems is also greatly affected by the channels that the LoRa devices use for communications. It was demonstrated that the lightweight decentralized learning-based joint channel and SF-selection methods can make appropriate decisions with low computational complexity and power consumption in our previous study. However, the effect of the location situation of the LoRa devices on the communication performance in a practical larger-scale LoRa system has not been studied. Hence, to clarify the effect of the location situation of the LoRa devices on the communication performance in LoRa systems, in this paper, we implemented and evaluated the learning-based joint channel and SF-selection methods in a practical LoRa system. In the learning-based methods, the channel and SF are decided only based on the ACKnowledge information. The learning methods evaluated in this paper were the Tug of War dynamics, Upper Confidence Bound 1, and ϵ-greedy algorithms. Moreover, to consider the relevance of the channel and SF, we propose a combinational multi-armed bandit-based joint channel and SF-selection method. Compared with the independent methods, the combinations of the channel and SF are set as arms. Conversely, the SF and channel are set as independent arms in the independent methods that are evaluated in our previous work. From the experimental results, we can see the following points. First, the combinatorial methods can achieve a higher frame success rate and fairness than the independent methods. In addition, the FSR can be improved by joint channel and SF selection compared to SF selection only. Moreover, the channel and SF selection dependents on the location situation to a great extent.

2.
Math Biosci Eng ; 19(2): 2056-2094, 2022 01.
Article in English | MEDLINE | ID: mdl-35135242

ABSTRACT

Data-driven and feedback cycle-based approaches are necessary to optimize the performance of modern complex wireless communication systems. Machine learning technologies can provide solutions for these requirements. This study shows a comprehensive framework of optimizing wireless communication systems and proposes two optimal decision schemes that have not been well-investigated in existing research. The first one is supervised learning modeling and optimal decision making by optimization, and the second is a simple and implementable reinforcement learning algorithm. The proposed schemes were verified through real-world experiments and computer simulations, which revealed the necessity and validity of this research.


Subject(s)
Algorithms , Machine Learning , Communication , Computer Simulation
3.
Sci Adv ; 4(9): eaau2057, 2018 09.
Article in English | MEDLINE | ID: mdl-30202787

ABSTRACT

Decision-making is being performed frequently in areas of computation to obtain better performance in a wide variety of current intelligent activities. In practical terms, this decision-making must adapt to dynamic changes in environmental conditions. However, because of limited computational resources, adaptive decision-making is generally difficult to achieve using conventional computers. The ionic decision-maker reported here, which uses electrochemical phenomena, has excellent dynamic adaptabilities, as demonstrated by its ability to solve multiarmed bandit problems (MBPs) in which a gambler given a choice of slot machines must select the appropriate machines to play so as to maximize the total reward in a series of trials. Furthermore, our ionic decision-maker successfully solves dynamic competitive MBPs, which cause serious loss due to the collision of selfish users in communication networks. The technique used in our devices offers a shift toward decision-making using the motion of ions, an approach that could find myriad applications in computer science and technology, including artificial intelligence.

4.
Sci Rep ; 8(1): 5769, 2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29622807

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

5.
R Soc Open Sci ; 5(12): 180396, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30662714

ABSTRACT

Choosing a better move correctly and quickly is a fundamental skill of living organisms that corresponds to solving a computationally demanding problem. A unicellular plasmodium of Physarum polycephalum searches for a solution to the travelling salesman problem (TSP) by changing its shape to minimize the risk of being exposed to aversive light stimuli. In our previous studies, we reported the results on the eight-city TSP solution. In this study, we show that the time taken by plasmodium to find a reasonably high-quality TSP solution grows linearly as the problem size increases from four to eight. Interestingly, the quality of the solution does not degrade despite the explosive expansion of the search space. Formulating a computational model, we show that the linear-time solution can be achieved if the intrinsic dynamics could allocate intracellular resources to grow the plasmodium terminals with a constant rate, even while responding to the stimuli. These results may lead to the development of novel analogue computers enabling approximate solutions of complex optimization problems in linear time.

6.
Sci Rep ; 7(1): 15085, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29118387

ABSTRACT

We experimentally study a Stub photonic lattice and excite their localized linear states originated from an isolated Flat Band at the center of the linear spectrum. By exciting these modes in different regions of the lattice, we observe that they do not diffract across the system and remain well trapped after propagating along the crystal. By using their wave nature, we are able to combine - in phase and out of phase - two neighbor states into a coherent superposition. These observations allow us to propose a novel setup for performing three different all-optical logical operations such as OR, AND, and XOR, positioning Flat Band systems as key setups to perform all-optical operations at any level of power.

7.
Sci Rep ; 7(1): 8772, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28821739

ABSTRACT

Reinforcement learning involves decision making in dynamic and uncertain environments and constitutes an important element of artificial intelligence (AI). In this work, we experimentally demonstrate that the ultrafast chaotic oscillatory dynamics of lasers efficiently solve the multi-armed bandit problem (MAB), which requires decision making concerning a class of difficult trade-offs called the exploration-exploitation dilemma. To solve the MAB, a certain degree of randomness is required for exploration purposes. However, pseudorandom numbers generated using conventional electronic circuitry encounter severe limitations in terms of their data rate and the quality of randomness due to their algorithmic foundations. We generate laser chaos signals using a semiconductor laser sampled at a maximum rate of 100 GSample/s, and combine it with a simple decision-making principle called tug of war with a variable threshold, to ensure ultrafast, adaptive, and accurate decision making at a maximum adaptation speed of 1 GHz. We found that decision-making performance was maximized with an optimal sampling interval, and we highlight the exact coincidence between the negative autocorrelation inherent in laser chaos and decision-making performance. This study paves the way for a new realm of ultrafast photonics in the age of AI, where the ultrahigh bandwidth of light wave can provide new value.

8.
Prog Biophys Mol Biol ; 130(Pt A): 103-105, 2017 11.
Article in English | MEDLINE | ID: mdl-28600219

ABSTRACT

Recent advances in the applications of quantum models into various disciplines such as cognitive science, social sciences, economics, and biology witnessed enormous achievements and possible future progress. In this paper, we propose one of the most promising directions in the applications of quantum models: the combination of quantum and mechanical models in social biophysics. The possible resulting discipline may be called as experimental quantum social biophysics and could foster our understandings of the relationships between the society and individuals.


Subject(s)
Biophysics/methods , Mechanical Phenomena , Quantum Theory , Social Sciences/methods , Humans
9.
Sci Rep ; 6: 38634, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27929091

ABSTRACT

We investigate two types of random walks with a fluctuating probability (bias) in which the random walker jumps to the right. One is a 'time-quenched framework' using bias time series such as periodic, quasi-periodic, and chaotic time series (chaotically driven bias). The other is a 'time-annealed framework' using the fluctuating bias generated by a stochastic process, which is not quenched in time. We show that the diffusive properties in the time-quenched framework can be characterised by the ensemble average of the time-averaged variance (ETVAR), whereas the ensemble average of the time-averaged mean square displacement (ETMSD) fails to capture the diffusion, even when the total bias is zero. We demonstrate that the ETVAR increases linearly with time, and the diffusion coefficient can be estimated by the time average of the local diffusion coefficient. In the time-annealed framework, we analytically and numerically show normal diffusion and superdiffusion, similar to the Lévy walk. Our findings will lead to new developments in information and communication technologies, such as efficient energy transfer for information propagation and quick solution searching.

10.
Sci Rep ; 5: 13253, 2015 Aug 17.
Article in English | MEDLINE | ID: mdl-26278007

ABSTRACT

Decision making is critical in our daily lives and for society in general and is finding evermore practical applications in information and communication technologies. Herein, we demonstrate experimentally that single photons can be used to make decisions in uncertain, dynamically changing environments. Using a nitrogen-vacancy in a nanodiamond as a single-photon source, we demonstrate the decision-making capability by solving the multi-armed bandit problem. This capability is directly and immediately associated with single-photon detection in the proposed architecture, leading to adequate and adaptive autonomous decision making. This study makes it possible to create systems that benefit from the quantum nature of light to perform practical and vital intelligent functions.


Subject(s)
Models, Statistical , Algorithms , Nanodiamonds/chemistry , Photons
11.
Sci Rep ; 4: 6039, 2014 Aug 12.
Article in English | MEDLINE | ID: mdl-25113239

ABSTRACT

By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs.

12.
Biosystems ; 117: 1-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24384066

ABSTRACT

The true slime mold Physarum polycephalum, a single-celled amoeboid organism, is capable of efficiently allocating a constant amount of intracellular resource to its pseudopod-like branches that best fit the environment where dynamic light stimuli are applied. Inspired by the resource allocation process, the authors formulated a concurrent search algorithm, called the Tug-of-War (TOW) model, for maximizing the profit in the multi-armed Bandit Problem (BP). A player (gambler) of the BP should decide as quickly and accurately as possible which slot machine to invest in out of the N machines and faces an "exploration-exploitation dilemma." The dilemma is a trade-off between the speed and accuracy of the decision making that are conflicted objectives. The TOW model maintains a constant intracellular resource volume while collecting environmental information by concurrently expanding and shrinking its branches. The conservation law entails a nonlocal correlation among the branches, i.e., volume increment in one branch is immediately compensated by volume decrement(s) in the other branch(es). Owing to this nonlocal correlation, the TOW model can efficiently manage the dilemma. In this study, we extend the TOW model to apply it to a stretched variant of BP, the Extended Bandit Problem (EBP), which is a problem of selecting the best M-tuple of the N machines. We demonstrate that the extended TOW model exhibits better performances for 2-tuple-3-machine and 2-tuple-4-machine instances of EBP compared with the extended versions of well-known algorithms for BP, the ϵ-Greedy and SoftMax algorithms, particularly in terms of its short-term decision-making capability that is essential for the survival of the amoeba in a hostile environment.


Subject(s)
Algorithms , Biomimetics/methods , Decision Making/physiology , Exploratory Behavior/physiology , Game Theory , Physarum polycephalum/cytology , Physarum polycephalum/physiology , Animals , Cell Size , Computer Simulation , Decision Support Techniques , Gambling , Models, Biological , Predatory Behavior/physiology
13.
Sci Rep ; 3: 2370, 2013.
Article in English | MEDLINE | ID: mdl-23928655

ABSTRACT

Decision-making is one of the most important intellectual abilities of the human brain. Here we propose an efficient decision-making system which uses optical energy transfer between quantum dots (QDs) mediated by optical near-field interactions occurring at scales far below the wavelength of light. The simulation results indicate that our system outperforms the softmax rule, which is known as the best-fitting algorithm for human decision-making behaviour. This suggests that we can produce a nano-system which makes decisions efficiently and adaptively by exploiting the intrinsic spatiotemporal dynamics involving QDs mediated by optical near-field interactions.


Subject(s)
Algorithms , Biomimetics/methods , Decision Making , Models, Theoretical , Nanoparticles/chemistry , Photons , Quantum Dots , Computer Simulation , Energy Transfer , Light , Nanoparticles/radiation effects , Signal Processing, Computer-Assisted
14.
Langmuir ; 29(24): 7557-64, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23565603

ABSTRACT

Biologically inspired computing devices and architectures are expected to overcome the limitations of conventional technologies in terms of solving computationally demanding problems, adapting to complex environments, reducing energy consumption, and so on. We previously demonstrated that a primitive single-celled amoeba (a plasmodial slime mold), which exhibits complex spatiotemporal oscillatory dynamics and sophisticated computing capabilities, can be used to search for a solution to a very hard combinatorial optimization problem. We successfully extracted the essential spatiotemporal dynamics by which the amoeba solves the problem. This amoeba-inspired computing paradigm can be implemented by various physical systems that exhibit suitable spatiotemporal dynamics resembling the amoeba's problem-solving process. In this Article, we demonstrate that photoexcitation transfer phenomena in certain quantum nanostructures mediated by optical near-field interactions generate the amoebalike spatiotemporal dynamics and can be used to solve the satisfiability problem (SAT), which is the problem of judging whether a given logical proposition (a Boolean formula) is self-consistent. SAT is related to diverse application problems in artificial intelligence, information security, and bioinformatics and is a crucially important nondeterministic polynomial time (NP)-complete problem, which is believed to become intractable for conventional digital computers when the problem size increases. We show that our amoeba-inspired computing paradigm dramatically outperforms a conventional stochastic search method. These results indicate the potential for developing highly versatile nanoarchitectonic computers that realize powerful solution searching with low energy consumption.


Subject(s)
Amoeba/physiology , Nanostructures , Animals , Quantum Dots
15.
Biosystems ; 112(1): 1-10, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23438635

ABSTRACT

A single-celled, multi-nucleated amoeboid organism, a plasmodium of the true slime mold Physarum polycephalum, can perform sophisticated computing by exhibiting complex spatiotemporal oscillatory dynamics while deforming its amorphous body. We previously devised an "amoeba-based computer (ABC)" to quantitatively evaluate the optimization capability of the amoeboid organism in searching for a solution to the traveling salesman problem (TSP) under optical feedback control. In ABC, the organism changes its shape to find a high quality solution (a relatively shorter TSP route) by alternately expanding and contracting its pseudopod-like branches that exhibit local photoavoidance behavior. The quality of the solution serves as a measure of the optimality of which the organism maximizes its global body area (nutrient absorption) while minimizing the risk of being illuminated (exposure to aversive stimuli). ABC found a high quality solution for the 8-city TSP with a high probability. However, it remains unclear whether intracellular communication among the branches of the organism is essential for computing. In this study, we conducted a series of control experiments using two individual cells (two single-celled organisms) to perform parallel searches in the absence of intercellular communication. We found that ABC drastically lost its ability to find a solution when it used two independent individuals. However, interestingly, when two individuals were prepared by dividing one individual, they found a solution for a few tens of minutes. That is, the two divided individuals remained correlated even though they were spatially separated. These results suggest the presence of a long-term memory in the intrinsic dynamics of this organism and its significance in performing sophisticated computing.


Subject(s)
Mathematical Computing , Movement/physiology , Physarum polycephalum/physiology , Signal Transduction/physiology , Feeding Behavior/physiology , Memory/physiology , Photic Stimulation
16.
J Nanosci Nanotechnol ; 12(3): 2934-8, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22755145

ABSTRACT

We have fabricated a square lattice array of sub-micrometer fluorescent (red and green) polystyrene particles. The particles were each embedded into small pits fabricated on a silicon substrate by electron beam lithography, through the drying process of an aqueous suspension containing equal amounts of the two species. We indexed 0 and 1 for each red and green particle, respectively, and then obtained a one-dimensional bit sequence by the successive reading of the indices in a predetermined manner. We evaluated the randomness of the bit sequence by using the improved FIPS 140-2 statistical test suite. Consequently, we found that the bit sequences do not have any non-randomness. The particle array was obtained by a very simple process, i.e., the drying of a suspension, but the particle distribution pattern was definitely unpredictable and irreproducible, and the number of possible patterns was tremendously large. The signal--i.e., the color of the particle--does not deteriorate within a practical timescale under various conditions, such as in an electric field, in a magnetic field, in air or water, on a solid matrix, and so on, which means that a small tip with the particle pattern can be installed in miscellaneous object, including electronic products, plastic credit cards, currency bills, and so on. Therefore, this particle array is applicable to a nanoscale identification tag or a one-time pad encryption tip.

17.
Biosystems ; 101(1): 29-36, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20399248

ABSTRACT

We propose a model - the "tug-of-war (TOW) model" - to conduct unique parallel searches using many nonlocally-correlated search agents. The model is based on the property of a single-celled amoeba, the true slime mold Physarum, which maintains a constant intracellular resource volume while collecting environmental information by concurrently expanding and shrinking its branches. The conservation law entails a "nonlocal correlation" among the branches, i.e., volume increment in one branch is immediately compensated by volume decrement(s) in the other branch(es). This nonlocal correlation was shown to be useful for decision making in the case of a dilemma. The multi-armed bandit problem is to determine the optimal strategy for maximizing the total reward sum with incompatible demands, by either exploiting the rewards obtained using the already collected information or exploring new information for acquiring higher payoffs involving risks. Our model can efficiently manage the "exploration-exploitation dilemma" and exhibits good performances. The average accuracy rate of our model is higher than those of well-known algorithms such as the modified -greedy algorithm and modified softmax algorithm, especially, for solving relatively difficult problems. Moreover, our model flexibly adapts to changing environments, a property essential for living organisms surviving in uncertain environments.


Subject(s)
Algorithms , Biomimetics/methods , Conservation of Natural Resources , Data Mining/methods , Physarum/physiology , Cell Size , Statistics as Topic
18.
Langmuir ; 25(8): 4293-7, 2009 Apr 21.
Article in English | MEDLINE | ID: mdl-19366215

ABSTRACT

We discuss 2D and binary self-assemblies of protein molecules using apo-ferritin and holo-ferritin, which have identical outer-shell structures but different inner structures. The assemblies do not show any phase separation but form 2D monomolecular-layer crystals. Statistical analyses showed a random molecular distribution in the crystal where the molar ratio was conserved as it was in the solution. This molecular pattern is readily prepared, but it is neither reproducible nor predictable and hence can be used as a nanometer-scale cryptographic device or an identification tag.


Subject(s)
Apoferritins/chemistry , Ferritins/chemistry , Proteins/chemistry , Algorithms , Computer Simulation , Crystallization , Mathematics , Microscopy, Electron, Scanning , Models, Statistical , Models, Theoretical , Monte Carlo Method , Probability , Surface Properties , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...