Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 292(46): 18832-18847, 2017 11 17.
Article in English | MEDLINE | ID: mdl-28972145

ABSTRACT

The bacterial toxin-antitoxin MazEF system in the tuberculosis (TB)-causing bacterium Mycobacterium tuberculosis is activated under unfavorable conditions, including starvation, antibiotic exposure, and oxidative stress. This system contains the ribonucleolytic enzyme MazF and has emerged as a promising drug target for TB treatments targeting the latent stage of M. tuberculosis infection and reportedly mediates a cell death process via a peptide called extracellular death factor (EDF). Although it is well established that the increase in EDF-mediated toxicity of MazF drives a cell-killing phenomenon, the molecular details are poorly understood. Moreover, the divergence in sequences among reported EDFs suggests that each bacterial species has a unique EDF. To address these open questions, we report here the structures of MazF4 and MazEF4 complexes from M. tuberculosis, representing the first MazEF structures from this organism. We found that MazF4 possesses a negatively charged MazE4-binding pocket in contrast to the positively charged MazE-binding pockets in homologous MazEF complex structures from other bacteria. Moreover, using NMR spectroscopy and biochemical assays, we unraveled the molecular interactions of MazF4 with its RNA substrate and with a new EDF homolog originating from M. tuberculosis The EDF homolog discovered here possesses a positively charged residue at the C terminus, making this EDF distinct from previously reported EDFs. Overall, our results suggest that M. tuberculosis evolved a unique MazF and EDF and that the distinctive EDF sequence could serve as a starting point for designing new anti-tuberculosis drugs. We therefore conclude that this study might contribute to the development of a new line of anti-tuberculosis agents.


Subject(s)
Antitoxins/metabolism , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Endoribonucleases/metabolism , Mycobacterium tuberculosis/metabolism , Peptides/metabolism , Amino Acid Sequence , Antitoxins/chemistry , Bacterial Proteins/chemistry , Bacterial Toxins/chemistry , Crystallography, X-Ray , Drug Discovery , Endoribonucleases/chemistry , Humans , Models, Molecular , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/physiology , Peptides/chemistry , Protein Conformation , Protein Multimerization , Quorum Sensing , Sequence Alignment , Tuberculosis/microbiology
2.
Int J Biol Macromol ; 103: 965-971, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28545963

ABSTRACT

TBC1D4 (also known as AS160) is a Rab·GTPase-activating protein (RabGAP) which functions in insulin signaling. TBC1D4 is critical for translocation of glucose transporter 4 (GLUT4), from an inactive, intracellular, vesicle-bound site to the plasma membrane, where it promotes glucose entry into cells. The TBC1D4 protein is structurally subdivided into two N-terminal phosphotyrosine-binding (PTB) domains, a C-terminal catalytic RabGAP domain, and a disordered segment in between containing potential Akt phosphorylation sites. Structural predictions further suggest that a region C-terminal to the RabGAP domain adopts a coiled-coil motif. We show that C-terminal region (CTR) region is largely α-helical and mediates TBC1D4 RabGAP dimerization. RabGAP catalytic activity and thermal stability appear to be independent of CTR-mediated dimerization.


Subject(s)
GTPase-Activating Proteins/chemistry , Protein Multimerization , Humans , Protein Domains , Protein Stability , Protein Structure, Quaternary , Temperature
3.
Int J Biol Macromol ; 94(Pt A): 634-641, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27773839

ABSTRACT

Ice nucleation protein (INP) with its functional domain consisting of multiple 48-residue repeat units effectively induces super-cooled water into ice. Circular dichroism and infrared deconvolution analyses on a soluble 240-residue fragment of Pseudomonas syringae InaZ (InaZ240) containing five 48-residue repeat units indicated that it is mostly composed of ß-sheet and random coil. Analytical ultracentrifugation suggested that InaZ240 behaves as a monomer of an elongated ellipsoid. However, InaZ240 showed only minimum ice binding compared to anti-freeze proteins. Other P. syringae InaZ proteins with more 48-residue repeat units were made, in which the largest soluble fragment obtainable was an InaZ with twelve 48-residue repeat units. Size-exclusion chromatography analyses further suggested that the overall shape of the expressed InaZ fragments is pH-dependent, which becomes compact as the numbers of 48-residue repeat unit increase.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Ice/analysis , Peptide Fragments/chemistry , Pseudomonas syringae/chemistry , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hydrogen-Ion Concentration , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation, beta-Strand , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Solubility , Ultracentrifugation
4.
PLoS One ; 11(10): e0164243, 2016.
Article in English | MEDLINE | ID: mdl-27711177

ABSTRACT

Colonization of the human gastric mucosa by Helicobacter pylori requires its high motility, which depends on the helical cell shape. In H. pylori, several genes (csd1, csd2, csd3/hdpA, ccmA, csd4, csd5, and csd6) play key roles in determining the cell shape by alteration of cross-linking or by trimming of peptidoglycan stem peptides. H. pylori Csd1, Csd2, and Csd3/HdpA are M23B metallopeptidase family members and may act as d,d-endopeptidases to cleave the d-Ala4-mDAP3 peptide bond of cross-linked dimer muropeptides. Csd3 functions also as the d,d-carboxypeptidase to cleave the d-Ala4-d-Ala5 bond of the muramyl pentapeptide. To provide a basis for understanding molecular functions of Csd1 and Csd2, we have carried out their structural characterizations. We have discovered that (i) Csd2 exists in monomer-dimer equilibrium and (ii) Csd1 and Csd2 form a heterodimer. We have determined crystal structures of the Csd2121-308 homodimer and the heterodimer between Csd1125-312 and Csd2121-308. Overall structures of Csd1125-312 and Csd2121-308 monomers are similar to each other, consisting of a helical domain and a LytM domain. The helical domains of both Csd1 and Csd2 play a key role in the formation of homodimers or heterodimers. The Csd1 LytM domain contains a catalytic site with a Zn2+ ion, which is coordinated by three conserved ligands and two water molecules, whereas the Csd2 LytM domain has incomplete metal ligands and no metal ion is bound. Structural knowledge of these proteins sheds light on the events that regulate the cell wall in H. pylori.


Subject(s)
Bacterial Proteins/metabolism , Cell Shape/physiology , Helicobacter pylori/metabolism , Metalloproteases/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Catalytic Domain , Crystallography, X-Ray , Dimerization , Histidine/genetics , Histidine/metabolism , Metalloproteases/chemistry , Metalloproteases/genetics , Molecular Sequence Data , Oligopeptides/genetics , Oligopeptides/metabolism , Protein Binding , Protein Structure, Quaternary , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Sequence Alignment , Substrate Specificity , Zinc/chemistry , Zinc/metabolism
5.
J Nanosci Nanotechnol ; 16(2): 2065-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27433729

ABSTRACT

We have developed the first nanoengineered quantum dot molecular complex designed to measure changes of calcium ion (Ca2+) concentration at high spatial and temporal resolutions in real time. The sensor is ratiometric and composed of three components: a quantum dot (QD) emitting at 620 nm as a fluorescence donor, an organic dye (Alexa Fluor 647) as a fluorescence acceptor, and a calmodulin-M13 (CaM-M13) protein part as a calcium sensing component. In this work, we have determined the maximal number of CaM-M13 required for saturating a single QD particle to be approximately 16. The dissociation constant, Kd of the QD-based calcium ion sensor was also estimated to be around 30 microM.

6.
PLoS One ; 10(12): e0145331, 2015.
Article in English | MEDLINE | ID: mdl-26709515

ABSTRACT

Thermoplasma acidophilum is a thermophilic archaeon that uses both non-phosphorylative Entner-Doudoroff (ED) pathway and Embden-Meyerhof-Parnas (EMP) pathway for glucose degradation. While triosephosphate isomerase (TPI), a well-known glycolytic enzyme, is not involved in the ED pathway in T. acidophilum, it has been considered to play an important role in the EMP pathway. Here, we report crystal structures of apo- and glycerol-3-phosphate-bound TPI from T. acidophilum (TaTPI). TaTPI adopts the canonical TIM-barrel fold with eight α-helices and parallel eight ß-strands. Although TaTPI shares ~30% sequence identity to other TPIs from thermophilic species that adopt tetrameric conformation for enzymatic activity in their harsh physiological environments, TaTPI exists as a dimer in solution. We confirmed the dimeric conformation of TaTPI by analytical ultracentrifugation and size-exclusion chromatography. Helix 5 as well as helix 4 of thermostable tetrameric TPIs have been known to play crucial roles in oligomerization, forming a hydrophobic interface. However, TaTPI contains unique charged-amino acid residues in the helix 5 and adopts dimer conformation. TaTPI exhibits the apparent Td value of 74.6°C and maintains its overall structure with some changes in the secondary structure contents at extremely acidic conditions (pH 1-2). Based on our structural and biophysical analyses of TaTPI, more compact structure of the protomer with reduced length of loops and certain patches on the surface could account for the robust nature of Thermoplasma acidophilum TPI.


Subject(s)
Glyceraldehyde 3-Phosphate/metabolism , Thermoplasma/enzymology , Triose-Phosphate Isomerase/metabolism , Triose-Phosphate Isomerase/ultrastructure , Amino Acid Sequence , Circular Dichroism , Crystallography, X-Ray , Dihydroxyacetone Phosphate/chemistry , Dimerization , Glyceraldehyde 3-Phosphate/chemistry , Glycolysis/physiology , Models, Molecular , Protein Conformation
7.
J Biol Chem ; 290(41): 25103-17, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26306031

ABSTRACT

Helicobacter pylori causes gastrointestinal diseases, including gastric cancer. Its high motility in the viscous gastric mucosa facilitates colonization of the human stomach and depends on the helical cell shape and the flagella. In H. pylori, Csd6 is one of the cell shape-determining proteins that play key roles in alteration of cross-linking or by trimming of peptidoglycan muropeptides. Csd6 is also involved in deglycosylation of the flagellar protein FlaA. To better understand its function, biochemical, biophysical, and structural characterizations were carried out. We show that Csd6 has a three-domain architecture and exists as a dimer in solution. The N-terminal domain plays a key role in dimerization. The middle catalytic domain resembles those of l,d-transpeptidases, but its pocket-shaped active site is uniquely defined by the four loops I to IV, among which loops I and III show the most distinct variations from the known l,d-transpeptidases. Mass analyses confirm that Csd6 functions only as an l,d-carboxypeptidase and not as an l,d-transpeptidase. The d-Ala-complexed structure suggests possible binding modes of both the substrate and product to the catalytic domain. The C-terminal nuclear transport factor 2-like domain possesses a deep pocket for possible binding of pseudaminic acid, and in silico docking supports its role in deglycosylation of flagellin. On the basis of these findings, it is proposed that H. pylori Csd6 and its homologs constitute a new family of l,d-carboxypeptidase. This work provides insights into the function of Csd6 in regulating the helical cell shape and motility of H. pylori.


Subject(s)
Carboxypeptidases/metabolism , Cell Shape , Helicobacter pylori/cytology , Helicobacter pylori/enzymology , Amino Acid Sequence , Carboxypeptidases/chemistry , Catalytic Domain , Humans , Models, Molecular , Molecular Sequence Data , Protein Multimerization , Sugar Acids/metabolism
8.
PLoS One ; 10(5): e0126420, 2015.
Article in English | MEDLINE | ID: mdl-25997164

ABSTRACT

Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.


Subject(s)
Ultracentrifugation/methods , Ultracentrifugation/standards , Calibration , Reproducibility of Results
9.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 3): 675-86, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25760614

ABSTRACT

Helicobacter pylori is associated with various gastrointestinal diseases such as gastritis, ulcers and gastric cancer. Its colonization of the human gastric mucosa requires high motility, which depends on its helical cell shape. Seven cell shape-determining genes (csd1, csd2, csd3/hdpA, ccmA, csd4, csd5 and csd6) have been identified in H. pylori. Their proteins play key roles in determining the cell shape through modifications of the cell-wall peptidoglycan by the alteration of cross-linking or by the trimming of peptidoglycan muropeptides. Among them, Csd3 (also known as HdpA) is a bifunctional enzyme. Its D,D-endopeptidase activity cleaves the D-Ala(4)-mDAP(3) peptide bond between cross-linked muramyl tetrapeptides and pentapeptides. It is also a D,D-carboxypeptidase that cleaves off the terminal D-Ala(5) from the muramyl pentapeptide. Here, the crystal structure of this protein has been determined, revealing the organization of its three domains in a latent and inactive state. The N-terminal domain 1 and the core of domain 2 share the same fold despite a very low level of sequence identity, and their surface-charge distributions are different. The C-terminal LytM domain contains the catalytic site with a Zn(2+) ion, like the similar domains of other M23 metallopeptidases. Domain 1 occludes the active site of the LytM domain. The core of domain 2 is held against the LytM domain by the C-terminal tail region that protrudes from the LytM domain.


Subject(s)
Bacterial Proteins/chemistry , Helicobacter pylori/enzymology , Metalloproteases/chemistry , Zinc/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallography, X-Ray , Humans , Metalloproteases/genetics , Metalloproteases/metabolism , Peptidoglycan/chemistry , Peptidoglycan/genetics , Peptidoglycan/metabolism , Protein Structure, Tertiary , Zinc/metabolism
10.
Proteins ; 83(4): 781-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25663006

ABSTRACT

The ywpF gene (SAV2097) of the Staphylococcus aureus strain Mu50 encodes the YwpF protein, which may play a role in antibiotic resistance. Here, we report the first crystal structure of the YwpF superfamily from S. aureus at 2.5-Å resolution. The YwpF structure consists of two regions: an N-terminal core ß-barrel domain that shows structural similarity to type VI secretion system (T6SS) proteins (e.g., Hcp1, Hcp3, and EvpC) and a C-terminal two-helix pair. Although the monomer structure of S. aureus YwpF resembles those of T6SS proteins, the dimer/tetramer model of S. aureus YwpF is distinct from the functionally important hexameric ring of T6SS proteins. We therefore suggest that the S. aureus YwpF may have a different function compared to T6SS proteins.


Subject(s)
Bacterial Proteins/chemistry , Staphylococcus aureus/chemistry , Models, Molecular , Protein Subunits/chemistry , Type VI Secretion Systems , X-Ray Diffraction
11.
J Struct Biol ; 188(1): 22-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25220976

ABSTRACT

In Escherichia coli, seven genes (pstS, pstC, pstA, pstB, phoU, phoR, and phoB) are involved in sensing environmental phosphate (Pi) and controlling the expression of the Pho regulon. PhoU is a negative regulator of the Pi-signaling pathway and modulates Pi transport through Pi transporter proteins (PstS, PstC, PstA, and PstB) through the two-component system PhoR and PhoB. Inactivation of PhoY2, one of the two PhoU homologs in Mycobacterium tuberculosis, causes defects in persistence phenotypes and increased susceptibility to antibiotics and stresses. Despite the important biological role, the mechanism of PhoU function is still unknown. Here we have determined the crystal structure of PhoU from Pseudomonas aeruginosa. It exists as a dimer in the crystal, with each monomer consisting of two structurally similar three-helix bundles. Our equilibrium sedimentation measurements support the reversible monomer-dimer equilibrium model in which P. aeruginosa PhoU exists in solution predominantly as dimers, with monomers in a minor fraction, at low protein concentrations. The dissociation constant for PhoU dimerization is 3.2×10(-6)M. The overall structure of P. aeruginosa PhoU dimer resembles those of Aquifex aeolicus PhoU and Thermotoga maritima PhoU2. However, it shows distinct structural features in some loops and the dimerization pattern.


Subject(s)
Crystallography, X-Ray , Escherichia coli Proteins/chemistry , Membrane Transport Proteins/chemistry , Pseudomonas aeruginosa/chemistry , Signal Transduction , Transcription Factors/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Escherichia coli , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Membrane Transport Proteins/genetics , Phosphates/chemistry , Phosphates/metabolism , Promoter Regions, Genetic , Protein Conformation , Protein Multimerization , Regulon/genetics , Transcription Factors/genetics
12.
Biochim Biophys Acta ; 1844(10): 1790-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25062911

ABSTRACT

Acetylation and deacetylation reactions result in biologically important modifications that are involved in normal cell function and cancer development. These reactions, carried out by protein acetyltransferase enzymes, act by transferring an acetyl group from acetyl-coenzymeA (Ac-CoA) to various substrate proteins. Such protein acetylation remains poorly understood in Archaea, and has been only partially described. Information processing in Archaea has been reported to be similar to that in eukaryotes and distinct from the equivalent bacterial processes. The human N-acetyltransferase Ard1 (hArd1) is one of the acetyltransferases that has been found to be overexpressed in various cancer cells and tissues, and knockout of the hArd1 gene significantly reduces growth rate of the cancer cell lines. In the present study, we determined the crystal structure of Thermoplasma volcanium Ard1 (Tv Ard1), which shows both ligand-free and multiple ligand-bound forms, i.e.,Ac-CoA- and coenzyme A (CoA)-bound forms. The difference between ligand-free and ligand-bound chains in the crystal structure was used to search for the interacting residues. The re-orientation and position of the loop between ß4 and α3 including the phosphate-binding loop (P-loop) were observed, which are important for the ligand interaction. In addition, a biochemical assay to determine the N-acetyltransferase activity of Tv Ard1 was performed using the T.volcanium substrate protein Alba (Tv Alba). Taken together, the findings of this study elucidate ligand-free form of Tv Ard1 for the first time and suggest multiple modes of binding with Ac-CoA and CoA.

13.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 4): 1061-73, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24699650

ABSTRACT

Ice-binding proteins (IBPs) inhibit ice growth through direct interaction with ice crystals to permit the survival of polar organisms in extremely cold environments. FfIBP is an ice-binding protein encoded by the Antarctic bacterium Flavobacterium frigoris PS1. The X-ray crystal structure of FfIBP was determined to 2.1 Šresolution to gain insight into its ice-binding mechanism. The refined structure of FfIBP shows an intramolecular disulfide bond, and analytical ultracentrifugation and analytical size-exclusion chromatography show that it behaves as a monomer in solution. Sequence alignments and structural comparisons of IBPs allowed two groups of IBPs to be defined, depending on sequence differences between the α2 and α4 loop regions and the presence of the disulfide bond. Although FfIBP closely resembles Leucosporidium (recently re-classified as Glaciozyma) IBP (LeIBP) in its amino-acid sequence, the thermal hysteresis (TH) activity of FfIBP appears to be tenfold higher than that of LeIBP. A comparison of the FfIBP and LeIBP structures reveals that FfIBP has different ice-binding residues as well as a greater surface area in the ice-binding site. Notably, the ice-binding site of FfIBP is composed of a T-A/G-X-T/N motif, which is similar to the ice-binding residues of hyperactive antifreeze proteins. Thus, it is proposed that the difference in TH activity between FfIBP and LeIBP may arise from the amino-acid composition of the ice-binding site, which correlates with differences in affinity and surface complementarity to the ice crystal. In conclusion, this study provides a molecular basis for understanding the antifreeze mechanism of FfIBP and provides new insights into the reasons for the higher TH activity of FfIBP compared with LeIBP.


Subject(s)
Antifreeze Proteins/chemistry , Bacterial Proteins/chemistry , Flavobacterium/chemistry , Crystallography, X-Ray , Ice , Models, Molecular , Protein Structure, Tertiary
14.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 735-46, 2013 May.
Article in English | MEDLINE | ID: mdl-23633582

ABSTRACT

Maturation of cytochrome c is carried out in the bacterial periplasm, where specialized thiol-disulfide oxidoreductases provide the correct reduction of oxidized apocytochrome c before covalent haem attachment. HP0377 from Helicobacter pylori is a thioredoxin-fold protein that has been implicated as a component of system II for cytochrome c assembly and shows limited sequence similarity to Escherichia coli DsbC, a disulfide-bond isomerase. To better understand the role of HP0377, its crystal structures have been determined in both reduced and partially oxidized states, which are highly similar to each other. Sedimentation-equilibrium experiments indicate that HP0377 is monomeric in solution. HP0377 adopts a thioredoxin fold but shows distinctive variations as in other thioredoxin-like bacterial periplasmic proteins. The active site of HP0377 closely resembles that of E. coli DsbC. A reductase assay suggests that HP0377 may play a role as a reductase in the biogenesis of holocytochrome c553 (HP1227). Binding experiments indicate that it can form a covalent complex with HP0518, a putative L,D-transpeptidase with a catalytic cysteine residue, via a disulfide bond. Furthermore, physicochemical properties of HP0377 and its R86A variant have been determined. These results suggest that HP0377 may perform multiple functions as a reductase in H. pylori.


Subject(s)
Bacterial Proteins/chemistry , Helicobacter pylori/chemistry , Protein Disulfide Reductase (Glutathione)/chemistry , Amino Acid Sequence , Bacterial Proteins/metabolism , Catalytic Domain , Crystallography, X-Ray , Cysteine/chemistry , Cytochromes c/metabolism , Helicobacter pylori/metabolism , Models, Molecular , Molecular Sequence Data , Periplasmic Proteins/chemistry , Periplasmic Proteins/metabolism , Protein Conformation , Protein Disulfide Reductase (Glutathione)/metabolism
15.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 3): 420-31, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23519417

ABSTRACT

Difficulty in the treatment of tuberculosis and growing drug resistance in Mycobacterium tuberculosis (Mtb) are a global health issue. Carbapenems inactivate L,D-transpeptidases; meropenem, when administered with clavulanate, showed in vivo activity against extensively drug-resistant Mtb strains. LdtMt2 (Rv2518c), one of two functional L,D-transpeptidases in Mtb, is predominantly expressed over LdtMt1 (Rv0116c). Here, the crystal structure of N-terminally truncated LdtMt2 (residues Leu131-Ala408) is reported in both ligand-free and meropenem-bound forms. The structure of meropenem-inhibited LdtMt2 provides a detailed structural view of the interactions between a carbapenem drug and Mtb L,D-transpeptidase. The structures revealed that the catalytic L,D-transpeptidase domain of LdtMt2 is preceded by a bacterial immunogloblin-like Big_5 domain and is followed by an extended C-terminal tail that interacts with both domains. Furthermore, it is shown using mass analyses that meropenem acts as a suicide inhibitor of LdtMt2. Upon acylation of the catalytic Cys354 by meropenem, the `active-site lid' undergoes a large conformational change to partially cover the active site so that the bound meropenem is accessible to the bulk solvent via three narrow paths. This work will facilitate structure-guided discovery of L,D-transpeptidase inhibitors as novel antituberculosis drugs against drug-resistant Mtb.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/drug effects , Enzyme Inhibitors/pharmacology , Peptidyl Transferases/antagonists & inhibitors , Peptidyl Transferases/chemistry , Thienamycins/pharmacology , Crystallography, X-Ray , Meropenem , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology
16.
Cryobiology ; 64(3): 286-96, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22426061

ABSTRACT

Previously, we reported the ice-binding protein (LeIBP) from the Arctic yeast Leucosporidium sp. AY30. In this study we provide physicochemical characterization of this IBP, which belongs to a class of IBPs that exhibited no significant similarity in primary structure to other known antifreeze proteins (AFPs). We compared native, glycosylated and non-glycosylated recombinant LeIBPs. Interestingly, size-exclusion chromatography and analytical ultracentrifugation revealed that LeIBP self-associates with a reversible dimer with K(d) values in the range 3.45-7.24×10(-6) M. Circular dichroism (CD) spectra showed that LeIBP, glycosylated or non-glycosylated, is predominantly composed of ß-strand secondary structural elements (54.6%), similar to other ß-helical antifreeze proteins (AFPs). In thermal hysteresis (TH) activity measurements, native LeIBP was twice more active (0.87 °C at 15 mg/mL) than that of the recombinant IBPs (0.43-0.42 °C at 10.8 mg/mL). This discrepancy is probably due to uncharacterized enhancing factors carried over during ice affinity purification, because glycosylated and non-glycosylated recombinant proteins displayed similarly low activity. Ice recrystallization inhibition (RI) activities of the native and recombinant LeIBPs were comparable. Measurements of CD, TH activity, and RI showed that glycosylation does not cause structural changes and is not required for function. An ice-etching experiment using green fluorescent protein-tagged IBP revealed that LeIBP binds, just as hyperactive AFPs, to both basal and pyramidal prism planes of the ice crystal. Taken together, our results indicate that LeIBP, structurally similar to hyperactive AFPs, is moderately active and that a reversible dimer has no effect on its activity.


Subject(s)
Antifreeze Proteins/chemistry , Basidiomycota/chemistry , Fungal Proteins/chemistry , Ice/analysis , Antifreeze Proteins/genetics , Arctic Regions , Chromatography, Gel , Circular Dichroism , Cloning, Molecular , Crystallization , Dimerization , Escherichia coli , Freezing , Fungal Proteins/genetics , Glycosylation , Kinetics , Models, Molecular , Pichia , Protein Binding , Protein Structure, Secondary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Spectrometry, Fluorescence , Ultracentrifugation
17.
J Biol Chem ; 287(14): 10727-37, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22334682

ABSTRACT

Apoptosis inhibitor 5 (API5) is an anti-apoptotic protein that is up-regulated in various cancer cells. Here, we present the crystal structure of human API5. API5 exhibits an elongated all α-helical structure. The N-terminal half of API5 is similar to the HEAT repeat and the C-terminal half is similar to the ARM (Armadillo-like) repeat. HEAT and ARM repeats have been implicated in protein-protein interactions, suggesting that the cellular roles of API5 may be to mediate protein-protein interactions. Various components of multiprotein complexes have been identified as API5-interacting protein partners, suggesting that API5 may act as a scaffold for multiprotein complexes. API5 exists as a monomer, and the functionally important heptad leucine repeat does not exhibit the predicted a dimeric leucine zipper. Additionally, Lys-251, which can be acetylated in cells, plays important roles in the inhibition of apoptosis under serum deprivation conditions. The acetylation of this lysine also affects the stability of API5 in cells.


Subject(s)
Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Repetitive Sequences, Amino Acid , Amino Acid Sequence , Animals , Humans , Jurkat Cells , Leucine , Mice , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Secondary
18.
FEBS Lett ; 585(24): 3862-7, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22062156

ABSTRACT

Dsb proteins play important roles in bacterial pathogenicity. To better understand the role of Dsb proteins in Helicobacter pylori, we have structurally and functionally characterized H. pylori DsbG (HP0231). The monomer consists of two domains connected by a helical linker. Two monomers associate to form a V-shaped dimer. The monomeric and dimeric structures of H. pylori DsbG show significant differences compared to Escherichia coli DsbG. Two polyethylene glycol molecules are bound in the cleft of the V-shaped dimer, suggesting a possible role as a chaperone. Furthermore, we show that H. pylori DsbG functions as a reductase against HP0518, a putative L,D-transpeptidase with a catalytic cysteine residue.


Subject(s)
Helicobacter pylori/enzymology , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Bacterial Proteins/metabolism , Catalytic Domain , Escherichia coli/enzymology , Helicobacter pylori/metabolism , Membrane Proteins/metabolism , Models, Molecular , Oxidation-Reduction , Protein Multimerization , Protein Structure, Quaternary
19.
J Struct Biol ; 175(3): 442-50, 2011 09.
Article in English | MEDLINE | ID: mdl-21605684

ABSTRACT

Unique metal-dependent protein tyrosine phosphatases that belong to the polymerase and histindinol phosphatase (PHP) family are present in Gram-positive bacteria. They are distinct from the Cys-based, low-molecular-weight phosphotyrosine protein phosphatases (LMPTPs). Two representative members of the PHP family tyrosine phosphatases are YwqE from Bacillus subtilis and CpsB from Streptococcus pneumoniae. YwqE is involved in polysaccharide biosynthesis, bacterial DNA metabolism, and DNA damage response in B. subtilis. CpsB regulates capsular polysaccharide biosynthesis via tyrosine dephosphorylation of CpsD, its cognate tyrosine kinase, in S. pneumoniae. To gain insights into the active site and possible conformational changes of the metal-dependent tyrosine phosphatases from Gram-positive bacteria, we have determined the crystal structures of B. subtilis YwqE (in both the apo form and the phosphate-bound form) and S. pneumoniae CpsB (in the sulfate-bound form). Comparisons of the three structures reveal conformational plasticity of two active site loops. Furthermore, in both structures of the phosphate-bound YwqE and the sulfate-bound CpsB, the phosphate (or sulfate) ion is bound to a cluster of three metal ions in the active site, thus providing insight into the pre-catalytic state.


Subject(s)
Bacillus subtilis/enzymology , Bacterial Proteins/chemistry , Crystallography, X-Ray/methods , Metals/metabolism , Protein Tyrosine Phosphatases/chemistry , Streptococcus pneumoniae/enzymology , Bacterial Proteins/metabolism , Catalytic Domain , Protein Tyrosine Phosphatases/metabolism
20.
Biol Pharm Bull ; 33(11): 1814-21, 2010.
Article in English | MEDLINE | ID: mdl-21048305

ABSTRACT

A growing body of evidence suggests that nobiletin (5,6,7,8,3',4'-hexamethoxy flavone) from the peel of citrus fruits, enhances the damaged cognitive function in disease animal models. However, the neuroprotective mechanism has not been clearly elucidated. Since nobiletin has shown anti-inflammatory effects in several tissues, we investigated whether nobiletin suppresses excessive microglial activation implicated in neurotoxicity in lipopolysaccharide (LPS)-stimulated BV-2 microglia cell culture models. Release of nitric oxide (NO), the major inflammatory mediator in microglia, was markedly suppressed in a dose-dependent manner following nobiletin treatment (1-50 µM) in LPS-stimulated BV-2 microglia cells. The inhibitory effect of nobiletin was similar to that of minocycline, a well-known microglial inactivator. Nobiletin significantly inhibited the release of the pro-inflammatory cytokine tumor necrosis factor (TNF-α) and interleukin-1ß (IL-1ß). LPS-induced phosphorylations of extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), and p38 mitogen-activated protein kinases (MAPKs) were also significantly inhibited by nobiletin treatment. In addition, nobiletin markedly inhibited the LPS-induced pro-inflammatory transcription factor nuclear factor κB (NF-κB) signaling pathway by suppressing nuclear NF-κB translocation from the cytoplasm and subsequent expression of NF-κB in the nucleus. Taken together, these results may contribute to further exploration of the therapeutic potential and molecular mechanism of nobiletin in relation to neuroinflammation and neurodegenerative diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Citrus/chemistry , Inflammation/drug therapy , Microglia/drug effects , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Animals , Biological Transport/drug effects , Cell Line , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cytokines/antagonists & inhibitors , Cytoplasm/drug effects , Dose-Response Relationship, Drug , Fruit , Inflammation/metabolism , Lipopolysaccharides , Mice , Microglia/metabolism , Minocycline/pharmacology , Mitogen-Activated Protein Kinases/antagonists & inhibitors , NF-kappa B/antagonists & inhibitors , Neurodegenerative Diseases/drug therapy , Nitric Oxide/antagonists & inhibitors , Phosphorylation , Phytotherapy , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...