Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(2): 3418-3426, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34985245

ABSTRACT

A superconducting joint architecture to join unreacted carbon-doped multifilament magnesium diboride (MgB2) wires with the functionality to screen external magnetic fields for magnetic resonance imaging (MRI) magnet applications is proposed. The intrinsic diamagnetic property of a superconducting MgB2 bulk was exploited to produce a magnetic field screening effect around the current transfer path within the joint. Unprecedentedly, the joint fabricated using this novel architecture was able to screen magnetic fields up to 1.5 T at 20 K and up to 2 T at 15 K and thereby almost nullified the effect of the applied magnetic field by maintaining a constant critical current (Ic). The joint showed an Ic of 30.8 A in 1.5 T at 20 K and an ultralow resistance of about 3.32 × 10-14 Ω at 20 K in a self-field. The magnetic field screening effect shown by the MgB2 joint is expected to be extremely valuable for MRI magnet applications, where the Ic of the joints is lower than the Ic of the connected MgB2 wires in a given magnetic field and temperature.

2.
Sci Rep ; 9(1): 14287, 2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31582758

ABSTRACT

Superconducting joints are essential for persistent-mode operation in a superconducting magnet system to produce an ultra-stable magnetic field. Herein, we report rationally designed niobium-titanium (Nb-Ti) superconducting joints and their evaluation results in detail. For practical applications, superconducting joints were fabricated by using a solder matrix replacement method with two types of lead-bismuth (Pb-Bi) solder, including Pb42Bi58 as a new composition. All the joints attained a critical current of >200 A below 1.43 T at 4.2 K. Our optimized superconducting joining method was tested in a closed-loop coil, obtaining a total circuit resistance of 3.25 × 10-14 Ω at 4.2 K in self-field. Finally, persistent-mode operation was demonstrated in an Nb-Ti solenoid coil with a persistent-current switch. This work will pave the way to developing high-performance Nb-Ti superconducting joints for practical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...