Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Eur J Med Chem ; 264: 116014, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38061230

ABSTRACT

CDK12 is overexpressed in HER2-positive breast cancers and promotes tumorigenesis and trastuzumab resistance. Thus CDK12 is a good therapeutic target for the HER2-positive breast tumors resistant to trastuzumab. We previously reported a novel purine-based CDK inhibitor with an ability to degrade cyclinK. Herein, we further explored and synthesized new derivatives, and identified a new potent pan-CDK inhibitor degrading cyclinK (32e). Compound 32e potently inhibited CDK12/cyclinK with IC50 = 3 nM, and suppressed the growth of the both trastuzumab-sensitive and trastuzumab-resistant HER2-positive breast cancer cell lines (GI50's = 9-21 nM), which is superior to a potent, clinical pan-CDK inhibitor dinaciclib. Moreover, 32e (10, 20 mg/kg, ip, twice a week) showed a dose-dependent inhibition of tumor growth and a more dramatic anti-cancer effect than dinaciclib in mouse in vivo orthotopic breast cancer model of trastuzumab-resistant HCC1954 cells. Kinome-wide inhibition profiling revealed that 32e at 1 µM exhibits a decent selectivity toward CDK-family kinases including CDK12 over other wildtype protein kinases. Quantitative global proteomic analysis of 32e-treated HCC1954 cells demonstrated that 32e also showed a decent selectivity in degrading cyclinK over other cyclins. Compound 32e could be developed as a drug for intractable trastuzumab-resistant HER2-positive breast cancers. Our current study would provide a useful insight in designing potent cyclinK degraders.


Subject(s)
Neoplasms , Proteomics , Animals , Mice , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Receptor, ErbB-2/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Protein Kinase Inhibitors/pharmacology , Neoplasms/drug therapy
2.
Chem Biol Drug Des ; 102(3): 500-513, 2023 09.
Article in English | MEDLINE | ID: mdl-37072259

ABSTRACT

NSD3/WHSC1L1 lysine methyltransferase promotes the transcription of target genes through di- or tri-methylation at histone H3K36 using SAM as a cofactor. Genetic alterations such as amplification and gain-of-function mutation of NSD3 act as oncogenic drivers in several cancers including squamous cell lung cancer and breast cancer. NSD3 is an important therapeutic target for cancers, but the reported NSD3 inhibitors targeting the catalytic SET domain are very rare and show a poor activity. Herein, from a virtual library screening and the subsequent medicinal chemistry optimization, we identified a novel class of NSD3 inhibitors. Our docking analysis and pulldown result suggested that the most potent analogue 13i shows a unique, bivalent binding mode interacting with both SAM-binding site and BT3-bindig site within the SET domain. We found 13i inhibits NSD3 activity with IC50 = 287 µM in vitro and suppresses the proliferation of JIMT1 breast cancer cells with GI50 = 36.5 µM, which express a high level of NSD3. Also, 13i downregulated the levels of H3K36me2/3 in a dose-dependent manner. Our study could provide an insight in designing high-affinity NSD3 inhibitors. Also, as the acrylamide group of 13i was predicted to position near Cys1265 in the BT3-binding site, further optimization would lead to a discovery of novel irreversible NSD3 inhibitors.


Subject(s)
Breast Neoplasms , PR-SET Domains , Humans , Female , Histones , Protein Domains , Methylation , Breast Neoplasms/drug therapy
3.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36145262

ABSTRACT

HER2-positive (HER2+) breast cancer is defined by HER2 oncogene amplification on chromosome 17q12 and accounts for 15−20% population of breast-cancer patients. Therapeutic anti-HER2 antibody such as trastuzumab is used as the first-line therapy for HER2-positive breast cancers. However, more than 50% of the patients respond poorly to trastuzumab, illustrating that novel therapy is warranted to overcome the resistance. We previously reported that in the majority of HER2+ breast-cancer patients, CDK12 is co-amplified on 17q12 and involved in developing tumors and trastuzumab resistance, proposing CDK12 as a potential drug target for HER2+ breast cancers. Here, we designed and synthesized novel 2,6,9-trisubstituted purines as potent CDK12 inhibitors showing strong, equipotent antiproliferative activity against trastuzumab-sensitive HER2+ SK-Br3 cells and trastuzumab-resistant HER2+ HCC1954 cells (GI50 values < 50 nM) both of which express a high level of CDK12. Two potent analogue 30d and 30e at 40, 200 nM greatly downregulated the levels of cyclinK and Pol II p-CTD (Ser2), as well as the expression of CDK12 downstream genes (IRS1 and WNT1) in a dose-dependent manner. We also observed structure-property relationship for a subset of potent analogues, and found that 30e is highly stable in liver microsomes with lack of CYP inhibition. In addition, 30d exhibited a synergy with trastuzumab in the both cells, suggesting that our inhibitors could be applied to alleviate trastuzumab-resistance of HER2+ breast cancers and escalate the efficacy of trastuzumab as well. Our study may provide insight into developing a novel therapy for HER2+ breast cancers.

4.
Nutrients ; 13(12)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34959833

ABSTRACT

Helicobacter pylori (H. pylori) infection promotes gastric carcinogenesis by increasing oxidative stress, inflammation, and dysregulation of cell survival and proliferation of gastric epithelial cells. Astaxanthin (ASTX), a bioactive carotenoid, exhibits antioxidant and anticancer effects by modulating aberrant signaling pathways that lead to dysregulation of cell death and proliferation. To elucidate the molecular mechanism of H. pylori-induced gastric carcinogenesis and to examine the inhibitory effect of ASTX on H. pylori-induced gastric epithelial cell gene expression changes, we performed comparative RNA-sequencing (RNA-Seq) analysis for H. pylori-infected gastric epithelial cells treated with or without ASTX. RNA-Seq results reveal that differentially expressed genes (DEGs) in H. pylori-infected cells were mainly associated with the Wnt/ß-catenin signaling pathway, which is related to cell proliferation. ASTX significantly reversed H. pylori-induced transcriptional alterations of the key mediators involved in ß-catenin signaling, notably, porcupine (gene symbol, PORCN), spermine oxidase (SMOX), bone morphogenetic protein (BMP) and activin membrane-bound inhibitor (BAMBI), SMAD family member 4 (SMAD4), transforming growth factor-ß1 (TGFB1), Fos-like 1 (FOSLI), and c-myc (MYC). We suggest that ASTX may be a potential therapeutic agent that can suppress H. pylori-induced proliferation-associated gene expression changes, in part, by counter-regulating the Wnt/ß-catenin signaling pathway.


Subject(s)
Anticarcinogenic Agents/pharmacology , Epithelial Cells/drug effects , Helicobacter Infections/complications , Helicobacter pylori , Antioxidants/pharmacology , Carcinogenesis/drug effects , Cell Death/drug effects , Cell Proliferation/drug effects , Epithelial Cells/microbiology , Gastric Mucosa/cytology , Gene Expression/drug effects , Humans , Sequence Analysis, RNA , Stomach Neoplasms/microbiology , Stomach Neoplasms/prevention & control , Wnt Signaling Pathway/drug effects , Xanthophylls/pharmacology
5.
Mar Drugs ; 18(7)2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32679742

ABSTRACT

Helicobacter pylori (H. pylori) infection promotes the metastasis of gastric carcinoma cells by modulating signal transduction pathways that regulate cell proliferation, motility, and invasion. Astaxanthin (ASTX), a xanthophyll carotenoid, is known to inhibit cancer cell migration and invasion, however the mechanism of action of ASTX in H. pylori-infected gastric epithelial cells is not well understood. To gain insight into this process, we carried out a comparative RNA sequencing (RNA-Seq) analysis of human gastric cancer AGS (adenocarcinoma gastric) cells as a function of H. pylori infection and ASTX administration. The results were used to identify genes that are differently expressed in response to H. pylori and ASTX. Gene ontology (GO) analysis identified differentially expressed genes (DEGs) to be associated with cell cytoskeleton remodeling, motility, and/or migration. Among the 20 genes identified, those encoding c-MET, PI3KC2, PLCγ1, Cdc42, and ROCK1 were selected for verification by real-time PCR analysis. The verified genes were mapped, using signaling networks contained in the KEGG database, to create a signaling pathway through which ASTX might mitigate the effects of H. pylori-infection. We propose that H. pylori-induced upregulation of the upstream regulator c-MET, and hence, its downstream targets Cdc42 and ROCK1, is suppressed by ASTX. ASTX is also suggested to counteract H. pylori-induced activation of PI3K and PLCγ. In conclusion, ASTX can suppress H. pylori-induced gastric cancer progression by inhibiting cytoskeleton reorganization and reducing cell motility through downregulation of c-MET, EGFR, PI3KC2, PLCγ1, Cdc42, and ROCK1.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents/pharmacology , Cell Movement/drug effects , Gene Expression Profiling , Helicobacter pylori/pathogenicity , Stomach Neoplasms/drug therapy , Transcriptome , Adenocarcinoma/genetics , Adenocarcinoma/microbiology , Adenocarcinoma/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Host-Pathogen Interactions , Humans , Neoplasm Invasiveness , Protein Interaction Maps , Signal Transduction , Stomach Neoplasms/genetics , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology , Xanthophylls/pharmacology
6.
Mar Drugs ; 17(10)2019 Sep 23.
Article in English | MEDLINE | ID: mdl-31547619

ABSTRACT

Autophagy is a lysosomal pathway that degrades and recycles unused or dysfunctional cell components as well as toxic cytosolic materials. Basal autophagy favors cell survival. However, the aberrant regulation of autophagy can promote pathological conditions. The autophagy pathway is regulated by several cell-stress and cell-survival signaling pathways that can be targeted for the purpose of disease control. In experimental models of disease, the carotenoid astaxanthin has been shown to modulate autophagy by regulating signaling pathways, including the AMP-activated protein kinase (AMPK), cellular homolog of murine thymoma virus akt8 oncogene (Akt), and mitogen-activated protein kinase (MAPK), such as c-Jun N-terminal kinase (JNK) and p38. Astaxanthin is a promising therapeutic agent for the treatment of a wide variety of diseases by regulating autophagy.


Subject(s)
Autophagy/drug effects , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Animals , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , Xanthophylls/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism
7.
Nutrients ; 11(7)2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31248019

ABSTRACT

Intracellular Ca2+ homeostasis is commonly disrupted in acute pancreatitis. Sustained Ca2+ release from internal stores in pancreatic acinar cells (PACs), mediated by inositol triphosphate receptor (IP3R) and the ryanodine receptor (RyR), plays a key role in the initiation and propagation of acute pancreatitis. Pancreatitis induced by cerulein, an analogue of cholecystokinin, causes premature activation of digestive enzymes and enhanced accumulation of cytokines and Ca2+ in the pancreas and, as such, it is a good model of acute pancreatitis. High concentrations of the omega-3 fatty acid docosahexaenoic acid (DHA) inhibit inflammatory signaling pathways and cytokine expression in PACs treated with cerulein. In the present study, we determined the effect of DHA on key regulators of Ca2+ signaling in cerulein-treated pancreatic acinar AR42 J cells. The results of RNA-Sequencing (RNA-Seq) analysis showed that cerulein up-regulates the expression of IP3R1 and RyR2 genes, and that pretreatment with DHA blocks these effects. The results of real-time PCR confirmed that DHA inhibits cerulein-induced IP3R1 and RyR2 gene expression, and demonstrated that DHA pre-treatment decreases the expression of the Relb gene, which encodes a component of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcriptional activator complex, and the c-fos gene, which encodes a component of activator protein-1 (AP-1) transcriptional activator complex. Taken together, DHA inhibits mRNA expression of IP3R1, RyR2, Relb, and c-fos, which is related to Ca2+ network in cerulein-stimulated PACs.


Subject(s)
Acinar Cells/drug effects , Calcium Signaling/drug effects , Ceruletide/toxicity , Docosahexaenoic Acids/pharmacology , Gene Expression Profiling/methods , Pancreas, Exocrine/drug effects , Pancreatitis/drug therapy , Sequence Analysis, RNA , Acinar Cells/metabolism , Animals , Calcium Signaling/genetics , Cell Line , Gene Expression Regulation , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Pancreas, Exocrine/metabolism , Pancreatitis/chemically induced , Pancreatitis/genetics , Pancreatitis/metabolism , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Rats , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Transcription Factor RelB/genetics , Transcription Factor RelB/metabolism
8.
J Cancer Prev ; 24(1): 54-58, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30993096

ABSTRACT

BACKGROUND: Helicobacter pylori increases production of reactive oxygen species (ROS), which activates inflammatory and carcinogenesis-related signaling pathways in gastric epithelial cells. Therefore, reducing ROS, by upregulating antioxidant enzyme, such as superoxide dismutase (SOD), may be a novel strategy to prevent H. pylori-associated gastric diseases. Astaxanthin is an antioxidant carotenoid that prevents oxidative stress-induced cell injury. The present study was aimed to determine whether H. pylori decreases SOD activity by changing the levels of SOD1/SOD2 and whether astaxanthin prevents changes in SOD levels and activity in H. pylori-infected gastric epithelial AGS cells. METHODS: AGS cells were pre-treated with astaxanthin for 3 hours prior to H. pylori infection and cultured for 1 hour in the presence of H. pylori. SOD levels and activity were assessed by Western blot analysis and a commercial assay kit, respectively. Mitochondrial ROS was determined using MitoSOX fluorescence. RESULTS: H. pylori decreased SOD activity and the SOD2 level, but increased mitochondrial ROS in AGS cells. The SOD1 level was not changed by H. pylori infection. Astaxanthin prevented H. pylori-induced decreases in the SOD2 level and SOD activity and reduced mitochondrial ROS in AGS cells. CONCLUSIONS: Consumption of astaxanthin-rich food may prevent the development of H. pylori-associated gastric disorders by suppressing mitochondrial oxidative stress.

9.
Nutrients ; 10(9)2018 Sep 18.
Article in English | MEDLINE | ID: mdl-30231525

ABSTRACT

Helicobacter pylori (H. pylori) infection leads to gastric inflammation, peptic ulcer and gastric carcinoma. H. pylori activates NADPH oxidase and increases reactive oxygen species (ROS), which induce NF-κB activation and IL-8 expression in gastric epithelial cells. Dysfunctional mitochondria trigger inflammatory cytokine production. Peroxisome proliferator-activated receptors-γ (PPAR-γ) regulate inflammatory response. Astaxanthin is a powerful antioxidant that protects cells against oxidative stress. The present study was aimed at determining whether astaxanthin inhibits H. pylori-induced mitochondrial dysfunction, NF-κB activation, and IL-8 expression via PPAR-γ activation in gastric epithelial cells. Gastric epithelial AGS cells were treated with astaxanthin, NADPH oxidase inhibitor apocynin and PPAR-γ antagonist GW9662, and infected with H. pylori. As a result, H. pylori caused an increase in intracellular and mitochondrial ROS, NF-κB activation and IL-8 expression, but decreased mitochondrial membrane potential and ATP level. Astaxanthin inhibited H. pylori-induced alterations (increased ROS, mitochondrial dysfunction, NF-κB activation, and IL-8 expression). Astaxanthin activated PPAR-γ and its target gene catalase in H. pylori-infected cells. Apocynin reduced ROS and inhibited IL-8 expression while astaxanthin did not affect NADPH oxidase activity. Inhibitory effects of astaxanthin on ROS levels and IL-8 expression were suppressed by addition of GW9662. In conclusion, astaxanthin inhibits H. pylori-induced mitochondrial dysfunction and ROS-mediated IL-8 expression by activating PPAR-γ and catalase in gastric epithelial cells. Astaxanthin may be beneficial for preventing oxidative stress-mediated gastric inflammation-associated H. pylori infection.


Subject(s)
Antioxidants/pharmacology , Epithelial Cells/drug effects , Gastric Mucosa/drug effects , Gastritis/prevention & control , Helicobacter Infections/drug therapy , Helicobacter pylori/pathogenicity , Interleukin-8/metabolism , Mitochondria/drug effects , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Epithelial Cells/pathology , Gastric Mucosa/metabolism , Gastric Mucosa/microbiology , Gastric Mucosa/pathology , Gastritis/metabolism , Gastritis/microbiology , Gastritis/pathology , Helicobacter Infections/metabolism , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Host-Pathogen Interactions , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Mitochondria/microbiology , Mitochondria/pathology , NF-kappa B/metabolism , Oxidative Stress/drug effects , PPAR gamma/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Xanthophylls/pharmacology
10.
Nutrients ; 10(9)2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30134611

ABSTRACT

Oxidative stress is a major contributor to the pathogenesis of various human diseases as well as to the aging process. Mitochondria, as the center of cellular metabolism and major regulators of redox balance, play a critical role in disease development and progression. Mitochondrial dysfunction involving structural and metabolic impairment is prominent in oxidative stress-related diseases. Increased oxidative stress can damage mitochondria, and subsequent mitochondrial dysfunction generates excesses of mitochondrial reactive oxygen species that cause cellular damage. Mitochondrial dysfunction also activates the mitochondrial apoptotic pathway, resulting in cellular death. Astaxanthin, a red-colored xanthophyll carotenoid, exerts an anti-oxidative and anti-inflammatory effect on various cell lines. In this manner astaxanthin maintains mitochondrial integrity under various pathological conditions. In this review, the inhibitory effects of astaxanthin on oxidative stress-induced mitochondrial dysfunction and related disease development are discussed.


Subject(s)
Antioxidants/pharmacology , Mitochondria/drug effects , Oxidative Stress/drug effects , Age Factors , Animals , Apoptosis/drug effects , Health Status , Humans , Mitochondria/metabolism , Mitochondria/pathology , Signal Transduction/drug effects , Xanthophylls/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...