Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 15386, 2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30337570

ABSTRACT

We investigated high-efficiency two-terminal tandem photovoltaic (PV) devices consisting of a p/i/n thin film silicon top sub-cell (p/i/n-TFS) and a heterojunction with an intrinsic thin-layer (HIT) bottom sub-cell. We used computer simulations and experimentation. The short-circuit current density (Jsc) of the top sub-cell limits the Jsc of the p/i/n-TFS/HIT tandem PV device. In order to improve the Jsc of the top sub-cell, we used a buffer-layer at the p/i and i/n interface and a graded forward-profile (f-p) band gap hydrogenated amorphous silicon germanium active layer, namely i-layer, in the top sub-cell. These two approaches showed a remarkable raise of the top sub-cell's Jsc, leading to the increase of the Jsc of the PV tandem device. Furthermore, in order to minimize the optical loss, we employed a double-layer anti-reflective coating (DL-ARC) with a magnesium fluoride/indium tin oxide double layer on the front surface. The reduction in broadband reflection on the front surface (with the DL-ARC) and the enhanced optical absorption in the long wavelength region (with the graded f-p band gap) resulted in the high Jsc, which helped achieve the efficiency up to 16.04% for inorganic-inorganic c-Si-based tandem PV devices.

2.
J Nanosci Nanotechnol ; 16(5): 4886-92, 2016 May.
Article in English | MEDLINE | ID: mdl-27483840

ABSTRACT

We developed a technique for forming textured aluminum-doped zinc oxide (ZnO:Al) transparent conductive oxide (TCO) films on glass substrates, which were etched using a mixture of hydrofluoric (HF) and hydrochloric (HCl) acids. The etching depth and surface roughness increased with an increase in the HF content and the etching time. The HF-based residues produced insoluble hexafluorosilicate anion- and oxide impurity-based semipermeable films, which reduced the etching rate. Using a small amount of HCl dissolved the Ca compounds, helping to fragment the semipermeable film. This formed random, complex structures on the glass substrates. The angled deposition of three layers of ZnO:Al led to the synthesis of multiscaled ZnO:Al textures on the glass substrates. The proposed approach resulted in textured ZnO:Al TCO films that exhibited high transmittance (-80%) and high haze (> 40%) values over wavelengths of 400-1000 nm, as well as low sheet resistances (< 18 Ω/sq)..Si tandem solar cells based on the ZnO:Al textured TCO films exhibited photocurrents and cell efficiencies that were 40% higher than those of cells with conventional TCO films.

3.
J Nanosci Nanotechnol ; 16(5): 4978-83, 2016 May.
Article in English | MEDLINE | ID: mdl-27483855

ABSTRACT

For thin film silicon-based solar cells, effective light trapping at a broad range of wavelengths (400-1100 nm) is necessary. Normally, etching is only carried out with TCOs, such as SnO2:F and impurity doped ZnO, to form nano-sized craters in the surface morphology to confer a light trapping effect. However, in this study, prior to ZnO:Al etching, periodic structures on the glass substrates were made by photolithography and wet etching to increase the light scattering and internal reflection. The use of periodic structures on the glass substrate resulted in higher haze ratios in the range from 550 nm to 1100 nm, which is the optical absorption wavelength region for thin film silicon solar cells, than obtained by simple ZnO:Al etching. The periodically textured glass with micro-sized structures compensates for the low haze ratio at the middle and long wavelengths of wet etched ZnO:Al. ZnO:Al was deposited on the periodically textured glass, after which the ZnO:Al surface was also etched randomly using a mixed acid solution to form nano-sized craters. The thin film silicon solar cells with 350-nm-thick amorphous silicon absorber layer deposited on the periodic structured glass and etched ZnO:Al generated up to 10.68% more photocurrent, with 11.2% increase of the conversion efficiency compared to the cell deposited on flat glass and etched ZnO:Al.

4.
J Nanosci Nanotechnol ; 15(3): 2247-52, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26413647

ABSTRACT

Transparent conductive oxides (TCOs) have been widely used as transparent electrodes for opto-electronic devices, such as solar cells, flat-panel displays, and light-emitting diodes, because of their unique characteristics of high optical transmittance and low electrical resistivity. Among various TCO materials, zinc oxide based films have recently received much attention because they have advantages over commonly used indium and tin-based oxide films. Most TCO films, however, exhibit valleys of transmittance in the wavelength range of 550-700 nm, lowering the average transmittance in the visible region and decreasing short-circuit current (Isc) of solar cells. A TCO/Ag/TCO multi-layer structure has emerged as an attractive alternative because it provides optical characteristics without the valley of transmittance compared with a 100-nm-thick single-layer TCO. In this article, we report the electrical, optical and surface properties of TCO/Ag/TCO. These multi-layers were deposited at room temperature with various Ag film thicknesses from 5 to 15 nm while the thickness of TCO thin film was fixed at 40 nm. The TCO/Ag/TCO multi-layer with a 10-nm-thick Ag film showed optimum transmittance in the visible (400-800 nm) wavelength region. These multi-layer structures have advantages over TCO layers of the same thickness.

5.
J Nanosci Nanotechnol ; 15(10): 7760-4, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26726408

ABSTRACT

This article mainly discusses the difference between p-i-n and n-i-p type solar cells. Their structural difference has an effect on cell performance, such as open circuit voltage and fill factor. Although the deposition conditions are the same for both p-i-n and n-i-p cases, the substrate layers for depositing p-type microcrystalline silicon layers differ. In n-i-p cells, the substrate layer is p-type amorphous silicon oxide layer; whereas, in p-i-n cells, the substrate layer is ZnO:Al. The interfacial change leads to a 12% difference in the crystallinity of the p-type microcrystalline silicon layers. When the p-type microcrystalline silicon layer's crystallinity was not sufficient to activate an internal electric field, the open circuit voltage and fill factor decreased 0.075 V and 7.36%, respectively. We analyzed this problem by comparing the Raman spectra, electrical conductivity, activation energy and solar cell performance. By adjusting the thickness of the p-type microcrystalline silicon layer, we increased the open circuit voltage of the n-i-p cell from 0.835 to 0.91 V.

6.
J Nanosci Nanotechnol ; 14(12): 9237-41, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25971043

ABSTRACT

Pulsed DC magnetron sputtered indium tin oxide (ITO) films deposited on glass substrates with lowest resistivity of 2.62 x 10(-4) Ω x cm and high transmittance of about 89% in the visible wavelength region. We report the enhancement of ITO work function (Φ(ITO)) by the variation of oxygen (O2) flow rate and N2O surface plasma treatment. The Φ(ITO) increased from 4.43 to 4.56 eV with the increase in O2 flow rate from 0 to 4 sccm while surface treatment of N2O plasma further enhanced the ITO work function to 4.65 eV. The crystallinity of the ITO films improved with increasing O2 flow rate, as revealed by XRD analysis. The ITO work function was increased by the interfacial dipole resulting from the surface rich in O- ions and by the dipole moment formed at the ITO surface during N2O plasma treatment. The ITO films with high work functions can be used to modify the front barrier height in heterojunction with intrinsic thin layer (HIT) solar cells.

7.
J Nanosci Nanotechnol ; 14(10): 7710-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25942853

ABSTRACT

An aluminum doped zinc oxide (AZO) films for front contacts of thin film solar cells, in this work, were prepared by DC magnetron sputtering with different target angles. Effects of target angles on the structural and electro-optical properties of AZO films were investigated. Also, to clarify the light trapping of textured AZO film, amorphous silicon thin film solar cells were fabricated on the textured AZO/glass substrate and the performance of solar cells were studied. The surface became more irregular with increasing the target angle due to larger grains. The self-surface textured morphology, which is a favorable property as front layer of solar cell, exhibited at target angle of 72.5 degrees. We obtained the films with various opto-electronic properties by controlling target angle from 32.5 degrees to 72.5 degrees. The spectral haze increased substantially with the target angle, whereas the electrical resistivity was increased. The conversion efficiency of amorphous silicon solar cells with textured AZO film as a front electrode was improved by the increase of short-circuit current density and fill factor, compared to cell with relatively flat AZO films.

8.
J Nanosci Nanotechnol ; 13(10): 7116-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24245205

ABSTRACT

We report aluminum doped zinc oxide (AZO) films with high work function as an insertion layer between transparent conducting oxides (TCO) and hydrogenated amorphous silicon carbide (a-SiC:H) layer to improve open circuit voltage (V(oc)) and fill factor (FF) for thin film solar cells. Amorphous silicon (a-Si:H) solar cells exhibit poor fill factors due to a Schottky barrier at the interface between a-SiC:H window and TCO. The interface engineering is carried out by inserting an AZO layer with high work function (4.95 eV at O2 = 2 sccm). As a result, V(oc) and FF improved significantly. FF as high as 63.35% is obtained.

9.
J Nanosci Nanotechnol ; 13(12): 7916-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24266164

ABSTRACT

Anisotropic etching of single-crystalline solar cells is used to increase the light absorption and surface area, which can improve the conversion efficiency. However, the conventional anisotropic etching process is limited for increasing surface area. For high-efficiency solar cells, unique surface structures are necessary. We present a new two-step texture process that involves combining dry etching and wet etching to produce a high-aspect-ratio surface structure for high-efficiency solar cells. Using this process, we achieved pillar-type surface structure with 1:1.9 aspect ratios in reactive ion etching (RIE), and the aspect ratio was increased further to 1:2.6 by the anisotropic wet etching process. The reflectance of the c-Si wafer was reduced from 24% to 12% by this two-step texturing process. This new technique can be used to increase the aspect ratio and surface area for high-efficiency c-Si solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...