Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 13(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34959320

ABSTRACT

Since the early 1990s, nanotechnology has led to new horizons in nanomedicine, which encompasses all spheres of science including chemistry, material science, biology, and biotechnology. Emerging viral infections are creating severe hazards to public health worldwide, recently, COVID-19 has caused mass human casualties with significant economic impacts. Interestingly, silver nanoparticles (AgNPs) exhibited the potential to destroy viruses, bacteria, and fungi using various methods. However, developing safe and effective antiviral drugs is challenging, as viruses use host cells for replication. Designing drugs that do not harm host cells while targeting viruses is complicated. In recent years, the impact of AgNPs on viruses has been evaluated. Here, we discuss the potential role of silver nanoparticles as antiviral agents. In this review, we focus on the properties of AgNPs such as their characterization methods, antiviral activity, mechanisms, applications, and toxicity.

2.
Biochem Pharmacol ; 182: 114219, 2020 12.
Article in English | MEDLINE | ID: mdl-32931773

ABSTRACT

Isoprenylcysteine carboxylmethyltransferase (ICMT) has been reported to regulate the inflammatory response through the Ras/MAPK/AP-1 pathway. Nevertheless, the potential of ICMT inhibitors as therapeutic agents against inflammatory diseases has not been examined. Therefore, in this study, we investigated the anti-inflammatory properties of two ICMT inhibitors, cysmethynil (CyM) and 3-methoxy-N-[2-2,2,6,6-tetramethyl-4-phenyltetrahydropyran-4-yl)ethyl]aniline (MTPA), using in vitro analyses and in vivo analyses (lipopolysaccharide (LPS)/D-GalN-triggered hepatitis and DSS-induced colitis mouse models). CyM and MTPA inhibited the production of nitric oxide (NO) and prostaglandin E (PGE)2 and the expression of cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α and interleukin (IL)-1ß in LPS-induced RAW264.7 cells and peritoneal macrophages without cytotoxicity. CyM also reduced AP-1-mediated luciferase activity in LPS-stimulated RAW264.7 cells and MyD88- and TRIF-expressing HEK293 cells. In addition, CyM and MTPA suppressed the translocation of Ras to the cell membrane and ER as well as phosphorylation of Ras-dependent AP-1 signaling molecules including Raf, MEK1/2, ERK p38, and JNK. Consistent with these results, CyM diminished the expression of inflammatory genes (COX-2, TNF-α, IL-1ß, and IL-6), AP-1-Luc activity, and phosphorylation of Ras-mediated signaling enzymes in Ras-overexpressing HEK 293 cells. Moreover, CyM and MTPA ameliorated symptoms of hepatitis and colitis in mice and restrained the ICMT/Ras-dependent AP-1 pathway in inflammatory lesions of the mouse model systems. Taken together, our results indicate that CyM and MTPA alleviate the LPS-induced ICMT/Ras/AP-1 signaling pathway, thereby inhibiting the inflammatory response as promising anti-inflammatory drugs.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Indoles/pharmacology , Protein Methyltransferases/antagonists & inhibitors , Protein Methyltransferases/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Dose-Response Relationship, Drug , HEK293 Cells , Hepatitis/drug therapy , Hepatitis/metabolism , Humans , Indoles/chemistry , Indoles/therapeutic use , Macrophages , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred ICR , RAW 264.7 Cells
3.
J Ginseng Res ; 44(4): 655-663, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32617046

ABSTRACT

BACKGROUND: Korean Red Ginseng is known to exhibit immune-enhancing and anti-inflammatory properties. The immune-enhancing effects of the nonsaponin fraction (NSF) of Korean Red Ginseng have been studied in many reports. However, the gastroprotective effect of this fraction is not fully understood. In this study, we demonstrate the activities of NSF for gastrointestinal protection and its related critical factor. METHODS: The in vitro and in vivo regulatory functions of NSF on cyclooxygenase-1 (COX-1) messenger RNA and protein levels were examined by reverse transcription polymerase chain reaction and immunoblotting analyses. Gastroprotective effects of NSF were investigated by histological score, gastric juice pH, and myeloperoxidase activity on indomethacin-induced, cold stress-induced, and acetylsalicylic acid-induced gastritis and dextran sulfate sodium-induced colitis in in vivo mouse models. RESULTS: NSF did not show cytotoxicity, and it increased COX-1 messenger RNA expression and protein levels in RAW264.7 cells. This upregulation was also observed in colitis and gastritis in vivo models. In addition, NSF treatment in mice ameliorated the symptoms of gastrointestinal inflammation, including histological score, colon length, gastric juice pH, gastric wall thickness, and myeloperoxidase activity. CONCLUSION: These results suggest that NSF has gastroprotective effects on gastritis and colitis in in vivo mouse models through COX-1 upregulation.

4.
Cells ; 9(5)2020 05 14.
Article in English | MEDLINE | ID: mdl-32422978

ABSTRACT

In this study, we investigated the functional role of isoprenylcysteine carboxyl methyltransferase (ICMT) and its methylatable substrate Ras in Toll-like receptor (TLR)-activated macrophages and in mouse inflammatory disease conditions. ICMT and RAS expressions were strongly increased in macrophages under the activation conditions of TLRs by lipopolysaccharide (LPS, a TLR4 ligand), pam3CSK (TLR2), or poly(I:C) (TLR3) and in the colons, stomachs, and livers of mice with colitis, gastritis, and hepatitis. The inhibition and activation of ICMT and Ras through genetic and pharmacological approaches significantly affected the activation of interleukin-1 receptor-associated kinase (IRAK)s, tumor necrosis factor receptor associated factor 6 (TRAF6), transforming growth factor-ß-activated kinase 1 (TAK1), mitogen-activated protein kinase (MAPK), and MAPK kinases (MAPKKs); translocation of the AP-1 family; and the expressions of inflammation-related genes that depend on both MyD88 and TRIF. Interestingly, the Ras/ICMT-mediated inflammatory reaction critically depends on the TIR domains of myeloid differentiation primary response 88 (MyD88) and TIR-domain-containing adapter-inducing interferon-ß (TRIF). Taken together, these results suggest that ICMT and its methylated Ras play important roles in the regulation of inflammatory responses through cooperation with the TIR domain of adaptor molecules.


Subject(s)
Inflammation/enzymology , Protein Methyltransferases/metabolism , Toll-Like Receptors/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Cell Line, Tumor , Disease Models, Animal , HEK293 Cells , Humans , Inflammation/pathology , MAP Kinase Signaling System , Macrophage Activation , Macrophages/enzymology , Male , Methylation , Mice , Models, Biological , Myeloid Differentiation Factor 88/metabolism , RAW 264.7 Cells , Substrate Specificity , Transcription Factor AP-1/metabolism , ras Proteins/metabolism
5.
Am J Chin Med ; 47(8): 1853-1868, 2019.
Article in English | MEDLINE | ID: mdl-31786945

ABSTRACT

Skin is the outer tissue layer and is a barrier protecting the body from various external stresses. The fresh water green edible algae Prasiola japonica has antiviral, antimicrobial, and anti-inflammatory properties; however, few studies of its effects on skin-protection have been reported. In this study, Prasiola japonica ethanol extract (Pj-EE) was prepared, and its skin-protective properties were investigated in skin keratinocytes. Pj-EE inhibited ROS production in UVB-irradiated HaCaT cells without cytotoxicity. Pj-EE also suppressed the apoptotic death of UVB-irradiated HaCaT cells by decreasing the generation of apoptotic bodies and the proteolytic activation of apoptosis caspase-3, -8, and -9. Moreover, Pj-EE downregulated the mRNA expression of the inflammatory gene cyclooxygenase-2 (COX-2), the pro-inflammatory cytokine genes interleukin (IL)-1ß, IL-8, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ, and the tissue remodeling genes matrix metalloproteinase (MMP)-1, -2, -3, and -9. The Pj-EE-induced anti-inflammatory effect was mediated by suppressing the activation of nuclear factor-kappa B (NF-κB) signaling pathway in the UVB-irradiated HaCaT cells. Taken together, these results suggest that Pj-EE exerts skin-protective effects through anti-oxidant, anti-apoptotic, and anti-inflammatory activities in skin keratinocytes.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Chlorophyta/chemistry , Keratinocytes/drug effects , Keratinocytes/radiation effects , Plant Extracts/pharmacology , Skin/drug effects , Skin/radiation effects , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Keratinocytes/cytology , Keratinocytes/immunology , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/immunology , NF-kappa B/genetics , NF-kappa B/immunology , Protective Agents/pharmacology , Skin/cytology , Skin/immunology , Ultraviolet Rays
6.
J Ginseng Res ; 43(4): 692-698, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31695573

ABSTRACT

BACKGROUND: Breast cancer is a severe disease and the second leading cause of cancer death in women worldwide. To surmount this, various diagnosis and treatment options for breast cancer have been developed. One of the most effective strategies for cancer treatment is to induce apoptosis using naturally occurring compounds. Compound K (CK) is a ginseng saponin metabolite generated by human intestinal bacteria. CK has been studied for its cardioprotective, antiinflammatory, and liver-protective effects; however, the role of CK in breast cancer is not fully understood. METHODS: To investigate the anticancer effects of CK in SKBR3 and MDA-MB-231 cells, cell viability assays and flow cytometry analysis were used. In addition, the direct targets of CK anticancer activity were identified using immunoblotting analysis and overexpression experiments. Invasion, migration, and clonogenic assays were carried out to determine the effects of CK on cancer metastasis. RESULTS: CK-induced cell apoptosis in SKBR3 cells as determined through 3-(4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assays, propidium iodide (PI) and annexin V staining, and morphological changes. CK increased the cleaved forms of caspase-7, caspase-8, and caspase-9, whereas the expression of Bcl-2 was reduced by CK. In assays probing the cell survival pathway, CK activated only AKT1 and not AKT2. Moreover, CK inhibited breast cancer cell invasion, migration, and colony formation. Through regulation of AKT1 activity, CK exerts anticancer effects by inducing apoptosis. CONCLUSION: Our results suggest that CK could be used as a therapeutic compound for breast cancer.

7.
Article in English | MEDLINE | ID: mdl-31611922

ABSTRACT

In this study, we investigated the anti-inflammatory effects of Licania macrocarpa Cuatrec methanol extract (Lm-ME) in vitro and in vivo and found pharmacological target proteins of Lm-ME in TLR4-mediated inflammatory signaling. This extract reduced NO production and mRNA expression of inflammatory cytokines such as iNOS, COX-2, IL-6, and IL-1ß. In the NF-κB- and AP-1-mediated luciferase reporter gene assay, transcription factor activities decreased under cotransfection with MyD88 or TRIF. Phosphorylated protein levels of Src, PI3K, IKKα/ß, and IκBα as well as p50 and p65 in the NF-κB signal pathway were downregulated, and phosphorylation of TAK1, MEK1/2, MKK4/7, and MKK3/6 as well as ERK, JNK, and p38 was decreased in the AP-1 signal pathway. Through overexpression of HA-Src and HA-TAK1, respectively, Lm-ME inhibited autophosphorylation of overexpressed proteins and thereby activated fewer downstream signaling molecules. Lm-ME also attenuated stomach ulcers in an HCl/EtOH-induced acute gastritis model mice, and COX-2 mRNA expression and phosphorylated TAK1 levels in gastric tissues were diminished. The flavonoids kaempferol and quercetin were identified in the HPLC analysis of Lm-ME; both are actively anti-inflammatory. Therefore, these results suggest that Lm-ME can be used for anti-inflammatory remedy by targeting Src and TAK1.

8.
Biochem Pharmacol ; 164: 216-227, 2019 06.
Article in English | MEDLINE | ID: mdl-30980807

ABSTRACT

This study presents BN82002 as an anti-inflammatory drug candidate. It was found that BN82002 inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 cells and peritoneal macrophages that were activated by toll-like receptor (TLR) 4 ligand, lipopolysaccharide (LPS). BN82002 dose-dependently down-regulated mRNA levels of nitric oxide synthase, tumor necrosis factor-α, and cyclooxygenase-2. The nuclear translocation of nuclear factor (NF)-κB (p65 and p50) was also blocked by BN82002 in RAW265.7 cells stimulated by LPS. According to reporter gene assay performed with NF-κB construct, BN82002 clearly reduced increased level of luciferase activity mediated by transcription factor NF-κB in LPS-treated RAW264.7 cells and in MyD88- and AKT2-overexpressing HEK293 cells. However, BN82002 did not inhibit NF-κB activity in AKT1- or IKKß-overexpressing HEK293 cells. NF-κB upstream signaling events specifically targeted AKT2 but had no effect on AKT1. The specific target of BN82002 was Tyr-178 in AKT2. BN82002 bound to Tyr-178 and interrupted the kinase activity of AKT2, according to a cellular thermal shift assay analysis of the interaction of BN82002 with AKT2 and an AKT2 mutant (Tyr-178 mutated to Ala; AKT2 Y178A). These results suggest that BN82002 could reduce inflammatory pathway by controlling NF-κB pathway and specifically targeting AKT2.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Ethylamines/pharmacology , Nitro Compounds/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , cdc25 Phosphatases/antagonists & inhibitors , cdc25 Phosphatases/metabolism , Animals , Dose-Response Relationship, Drug , Drug Delivery Systems/methods , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , RAW 264.7 Cells
9.
Int J Mol Sci ; 20(3)2019 Feb 02.
Article in English | MEDLINE | ID: mdl-30717391

ABSTRACT

Loliolide is a monoterpenoid hydroxylactone present in freshwater algae that has anti-inflammatory and antiaging activity; however, its effects on ultraviolet-damaged skin have yet to be elucidated. This study investigated the antiapoptosis and wound-healing effects of loliolide using HaCaT cells (a human keratinocyte cell line). Loliolide inhibited the expression of reactive oxygen species (ROS) induced by ultraviolet radiation as well as wrinkle formation-related matrix metalloproteinase genes and increased the expression of the damage repair-related gene SIRT1. The apoptosis signaling pathway was confirmed by Western blot analysis, which showed that loliolide was able to reduce the expression of caspases 3, 8, and 9, which are related to ROS-induced apoptosis. In addition, Western blotting, reverse-transcription polymerase chain reaction (PCR), and real-time PCR analyses showed that loliolide enhanced the expression of the epidermal growth factor receptor signaling pathway (PI3K, AKT) and migration factors, such as K6, K16, and K17; keratinocyte growth factor; and inflammatory cytokines, such as interleukin (IL)-1, IL-17, and IL-22 expressed during the cellular scratching process, suggesting a putative wound-healing ability. Because of the antiapoptosis and antiscratching effects on skin of both loliolide and loliolide-rich Prasiola japonica ethanol extract, we consider the former to be an important compound used in the cosmeceutical industry.


Subject(s)
Apoptosis/drug effects , Benzofurans/pharmacology , Keratinocytes/drug effects , Keratinocytes/metabolism , Antioxidants/pharmacology , Cell Line , Cell Movement , Cell Survival/drug effects , Gene Expression , Humans , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Molecular Structure
10.
J Ethnopharmacol ; 231: 1-9, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30415059

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Mycetia cauliflora Reinw. (Rubiaceae) has been used as a traditional remedy to ameliorate clinical signs of inflammatory diseases, including pain, inflammation, ulcers, and wounds. Among the Mycetia subfamilies, the molecular and cellular mechanisms of Mycetia longifolia (Rubiaceae) have been studied. However, those of Mycetia cauliflora are not clearly understood. Comprehensive investigation of this plant is necessary to evaluate its potential for ethnopharmacological use. MATERIALS: and methods: The activities of Mycetia cauliflora methanol extract (Mc-ME) on the secretion of inflammatory mediators, the mRNA expression of proinflammatory cytokines, and identification of its molecular targets were elucidated using lipopolysaccharide (LPS)-induced macrophage-like cells. Moreover, the suppressive actions of Mc-ME were examined in an LPS-induced peritonitis mouse model. RESULTS: At nontoxic concentrations, Mc-ME downregulated the release of nitric oxide (NO), the mRNA expression of inducible nitric oxide synthase (iNOS), and the mRNA expression of interleukin (IL)-1ß from LPS-activated RAW264.7 cells. This extract also inhibited the nuclear translocation of p65 and p50 and the phosphorylation of IκBα, IKK, and AKT. Western blot analysis and in vitro kinase assays confirmed that phosphoinositide-dependent kinase-1 (PDK1) is the direct immunopharmacological target of Mc-ME effect. In addition, Mc-ME significantly reduced inflammatory signs in an animal model of acute peritonitis. These effects were associated with decreased NO production and decreased AKT phosphorylation. CONCLUSION: Our results suggest that Mc-ME displays anti-inflammatory actions in LPS-treated macrophage-like cells and in an animal model of acute inflammatory disease. These actions are preferentially managed by targeting PDK1 in the nuclear factor (NF)-κB signaling pathway.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Plant Extracts/pharmacology , Protein Serine-Threonine Kinases/metabolism , Rubiaceae , Animals , Anti-Inflammatory Agents/therapeutic use , HEK293 Cells , Humans , Interleukin-1beta/genetics , Lipopolysaccharides , Macrophages, Peritoneal/drug effects , Male , Methanol/chemistry , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Peritonitis/chemically induced , Peritonitis/drug therapy , Peritonitis/metabolism , Plant Extracts/therapeutic use , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , RAW 264.7 Cells , Signal Transduction/drug effects , Solvents/chemistry
11.
Int J Mol Sci ; 19(9)2018 Sep 18.
Article in English | MEDLINE | ID: mdl-30231594

ABSTRACT

Loliolide is a monoterpenoid hydroxylactone found in many algae, including fresh water green algae, Prasiola japonica. To date, loliolide and compounds in P. japonica have not been studied systematically with respect to skin pharmacology. In this study, we investigated oxidative stress-protective and anti-melanogenic effects of loliolide and P. japonica ethanol extract (Pj-EE), known to contain loliolide, in human keratinocyte (HaCaT) cells and mouse melanoma (B16F10) cells. Loliolide suppressed the transcription of genes encoding matrix metalloproteinases (MMPS), which were induced in HaCaT cells by hydrogen peroxide (H2O2) treatment. Loliolide and Pj-EE not only reduced the melanin secretion and content in B16F10 cells but also increased the expression of the antioxidant proteins nuclear factor (erythroid-derived 2)-like 2 (NRF2) and heme oxygenase-1 (HO-1) in HaCaT cells subjected to H2O2 treatment. Furthermore, loliolide and Pj-EE decreased expression of the anti-melanogenic protein microphthalmia-associated transcription factor (MITF) and tyrosinase in B16F10 cells subjected to α-melanocyte-stimulating hormone (α-MSH) treatment. Our findings demonstrate that loliolide and Pj-EE have antioxidant and anti-melanogenic effects on skin.


Subject(s)
Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Benzofurans/pharmacology , Chlorophyta/chemistry , Melanins/metabolism , Melanoma/drug therapy , Oxidative Stress/drug effects , Animals , Antineoplastic Agents/chemistry , Antioxidants/chemistry , Benzofurans/chemistry , Cell Line , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Melanins/genetics , Melanoma/genetics , Melanoma/metabolism , Mice , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism
12.
J Ethnopharmacol ; 220: 57-66, 2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29609010

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia asiatica Nakai is a traditional herbal plant that has long been used in anti-inflammatory, anti-infective and skin protective remedies. AIM OF THE STUDY: In this study, traditionally known skin-protective activity of Artemisia asiatica Nakai was examined with its ethanol extract (Aa-EE) under various photoaging conditions using skin-originated cells, and the underlying mechanism was also examined using various types of cells. MATERIALS AND METHODS: Effects of Aa-EE on cell viability, photocytotoxicity, and expression of matrix metalloproteinases (MMPs), cyclooxygenase (COX)-2, and moisturizing factors were measured in B16F10, HEK293, NIH3T3, and HaCaT cells under untreated and ultraviolet B (UVB)-irradiation conditions. Anti-melanogenic effect of Aa-EE was also examined by measuring both melanin content in B16F10 cells and tyrosinase activity. Anti-photoaging mechanism of Aa-EE was explored by determining the activation levels of signaling molecules by immunoblotting analysis. RESULTS: Aa-EE protected HaCaT cells from UVB irradiation-induced death. Aa-EE increased the expression of a type 1 pro-collagen gene and decreased the expression of matrix metalloproteinases, and COX-2 in NIH3T3 cells induced by UVB. Aa-EE increased the expression of transglutamase-1, hyaluronic acid synthase (HAS)-2, and HAS-3 in HaCaT cells and decreased the production of melanin in α-melanocyte-stimulating hormone-stimulated B16F10 cells by suppressing tyrosinase activity and the expression of tyrosinase, microphthalmia-associated transcription factor, tyrosinase-related protein (TRP)-1 and TRP-2. CONCLUSION: The results suggest that Aa-EE could be skin-protective remedy with anti-photoaging, anti-apoptotic, skin remodeling, moisturizing, and anti-melanogenesis properties.


Subject(s)
Apoptosis/drug effects , Artemisia/chemistry , Plant Extracts/pharmacology , Skin Aging/drug effects , Animals , Cell Line , Cell Survival/drug effects , Ethanol/chemistry , HEK293 Cells , Humans , Medicine, Traditional , Melanins/metabolism , Mice , NIH 3T3 Cells , Signal Transduction/drug effects , Skin/drug effects , Skin/pathology , Skin/radiation effects , Ultraviolet Rays/adverse effects
13.
J Ginseng Res ; 42(1): 81-89, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29348726

ABSTRACT

BACKGROUND: BIOGF1K, a compound-K-rich fraction, has been shown to display anti-inflammatory activity. Although Panax ginseng is widely used for the prevention of photoaging events induced by UVB irradiation, the effect of BIOGF1K on photoaging has not yet been examined. In this study, we investigated the effects of BIOGF1K on UVB-induced photoaging events. METHODS: We analyzed the ability of BIOGF1K to prevent UVB-induced apoptosis, enhance matrix metalloproteinase (MMP) expression, upregulate anti-inflammatory activity, reduce sirtuin 1 expression, and melanin production using reverse transcription-polymerase chain reaction, melanin content assay, tyrosinase assay, and flow cytometry. We also evaluated the effects of BIOGF1K on the activator protein-1 signaling pathway, which plays an important role in photoaging, by immunoblot analysis and luciferase reporter gene assays. RESULTS: Treatment of UVB-irradiated NIH3T3 fibroblasts with BIOGF1K prevented UVB-induced cell death, inhibited apoptosis, suppressed morphological changes, reduced melanin secretion, restored the levels of type I procollagen and sirtuin 1, and prevented mRNA upregulation of MMP-1, MMP-2, and cyclo-oxygenase-2; these effects all occurred in a dose-dependent manner. In addition, BIOGF1K markedly reduced activator-protein-1-mediated luciferase activity and decreased the activity of mitogen-activated protein kinases (extracellular response kinase, p38, and C-Jun N-terminal kinase). CONCLUSION: Our results strongly suggest that BIOGF1K has anti-photoaging activity and that BIOGF1K could be used in anti-aging cosmeceutical preparations.

14.
Article in English | MEDLINE | ID: mdl-28811826

ABSTRACT

Piper attenuatum is used as a traditional medicinal plant in India. One of the substances in P. attenuatum has been suggested to have anti-inflammatory effects. However, there is insufficient research about the anti-inflammatory mechanisms of action of P. attenuatum. The effects of P. attenuatum methanol extract (Pa-ME) on the production of inflammatory mediators nitric oxide (NO) and prostaglandin E2 (PGE2), the expression of proinflammatory genes, the translocation level of transcription factors, and intracellular signaling activities were investigated using macrophages. Pa-ME suppressed the production of NO and PGE2 in lipopolysaccharide- (LPS-), pam3CSK4-, and poly(I:C)-stimulated RAW264.7 cells without displaying cytotoxicity. The mRNA expression levels of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2) were decreased by Pa-ME. P-ME reduced the translocation of p50/NF-κB and AP-1 (c-Jun and c-Fos), as well as the activity of their upstream enzymes Src, Syk, and TAK1. Immunoprecipitation analysis showed failure of binding between their substrates, phospho- (p-) p85 and p-MKK3/6. p-p85 and p-MKK3/6, which were induced by overexpression of Src, Syk, and TAK1, were also reduced by Pa-ME. Therefore, these results suggest that Pa-ME exerts its anti-inflammatory effects by targeting Src and Syk in the NF-κB signaling pathway and TAK1 in the AP-1 signaling pathway.

15.
Biomol Ther (Seoul) ; 24(6): 595-603, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27469142

ABSTRACT

(E)-3-Phenyl-1-(2-pyrrolyl)-2-propenone (PPP) is a pyrrole derivative of chalcone, in which the B-ring of chalcone linked to ß-carbon is replaced by pyrrole group. While pyrrole has been studied for possible Src inhibition activity, chalcone, especially the substituents on the B-ring, has shown pharmaceutical, anti-inflammatory, and anti-oxidant properties via inhibition of NF-κB activity. Our study is aimed to investigate whether this novel synthetic compound retains or enhances the pharmaceutically beneficial activities from the both structures. For this purpose, inflammatory responses of lipopolysaccharide (LPS)-treated RAW264.7 cells were analyzed. Nitric oxide (NO) production, inducible NO synthase (iNOS) and tumor necrosis factor-α (TNF-α) mRNA expression, and the intracellular inflammatory signaling cascade were measured. Interestingly, PPP strongly inhibited NO release in a dose-dependent manner. To further investigate this anti-inflammatory activity, we identified molecular pathways by immunoblot analyses of nuclear fractions and whole cell lysates prepared from LPS-stimulated RAW264.7 cells with or without PPP pretreatment. The nuclear levels of p50, c-Jun, and c-Fos were significantly inhibited when cells were exposed to PPP. Moreover, according to the luciferase reporter gene assay after cotransfection with either TRIF or MyD88 in HEK293 cells, NF-κB-mediated luciferase activity dose-dependently diminished. Additionally, it was confirmed that PPP dampens the upstream signaling cascade of NF-κB and AP-1 activation. Thus, PPP inhibited Syk, Src, and TAK1 activities induced by LPS or induced by overexpression of these genes. Therefore, our results suggest that PPP displays anti-inflammatory activity via inhibition of Syk, Src, and TAK1 activity, which may be developed as a novel anti-inflammatory drug.

16.
J Ethnopharmacol ; 188: 167-76, 2016 Jul 21.
Article in English | MEDLINE | ID: mdl-27178629

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Seed of Torreya nucifera (L.) Siebold & Zucc is used to treat several diseases in Asia. Reports document that T. nucifera has anti-cancer, anti-inflammatory, anti-oxidative activities. In spite of numerous findings on its pharmacological effects, the understanding of the molecular inhibitory mechanisms of the plant remains to be studied. Therefore, we aimed to explore in vitro anti-inflammatory mechanisms of ethyl acetate fraction (Tn-EE-BF) prepared from the seed of T. nucifera in LPS-stimulated macrophage inflammatory responses. MATERIALS AND METHODS: For this purpose, we measured nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated macrophages. Additionally, using RT-PCR, luciferase reporter gene assay, immunoblotting analysis, and kinase assay, the levels of inflammatory genes, transcription factors, and inflammatory signal-regulatory proteins were investigated. Finally, the constituent of Tn-EE-BF was identified using HPLC. RESULTS: Tn-EE-BF inhibits NO and PGE2 production and also blocks mRNA levels of inducible NO synthase (iNOS), tumor necrosis factor (TNF)-α, and cyclooxygenase (COX)-2 in a dose dependent manner. Tn-EE-BF reduces nuclear levels of the transcriptional factors NF-κB (p65) and AP-1 (c-Jun and FRA-1). Surprisingly, we found that Tn-EE-BF inhibits phosphorylation levels of Src and Syk in the NF-κB pathway, as well as, IRAK1 at the protein level, part of the AP-1 pathway. By kinase assay, we confirmed that Src, Syk, and IRAK1 are suppressed directly. HPLC analysis indicates that arctigenin, amentoflavone, and quercetin may be active components with anti-inflammatory activities. CONCLUSION: Tn-EE-BF exhibits anti-inflammatory activities by direct inhibition of Src/Syk/NF-κB and IRAK1/AP-1.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Butanols/chemistry , Interleukin-1 Receptor-Associated Kinases/metabolism , Lipopolysaccharides/pharmacology , Macrophage Activation/drug effects , Macrophages/drug effects , Plant Extracts/pharmacology , Solvents/chemistry , Syk Kinase/metabolism , Taxaceae/chemistry , src-Family Kinases/metabolism , Animals , Anti-Inflammatory Agents/isolation & purification , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Inflammation Mediators/metabolism , Macrophages/enzymology , Mice , Nitric Oxide , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Phosphorylation , Phytotherapy , Plant Extracts/isolation & purification , Plants, Medicinal , RAW 264.7 Cells , Signal Transduction/drug effects , Transcription Factor AP-1/metabolism , Transcription Factor RelA/metabolism , Transfection , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...