Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Arch Dermatol Res ; 316(6): 290, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809465

ABSTRACT

Enz_MoriL is a naturally occurring substance extracted from the leaves of Morus alba L. through enzymatic conversion. Historically, M. alba L. has been recognized for its potential to promote hair regrowth. However, the precise mechanism by which Enz_MoriL affects human hair follicle dermal papilla cells (hDPCs) remains unclear. The aim of this study was to investigate the molecular basis of Enz_MoriL's effect on hair growth in hDPCs. Interferon-gamma (IFN-γ) was used to examine the effects of Enz_MoriL on hDPCs during the anagen and catagen phases, as well as under conditions mimicking alopecia areata (AA). Enz_MoriL demonstrated the ability to promote cell proliferation in both anagen and catagen stages. It increased the levels of active ß-catenin in the catagen stage induced by IFN-γ, leading to its nuclear translocation. This effect was achieved by increasing the phosphorylation of GSK3ß and decreasing the expression of DKK-1. This stimulation induced proliferation in hDPCs and upregulated the expression of the Wnt family members 3a, 5a, and 7a at the transcript level. Additionally, Enz_MoriL suppressed JAK1 and STAT3 phosphorylation, contrasting with IFN-γ, which induced them in the catagen stage. In conclusion, Enz_MoriL directly induced signals for anagen re-entry into hDPCs by affecting the Wnt/ß-catenin pathway and enhancing the production of growth factors. Furthermore, Enz_MoriL attenuated and reversed the interferon-induced AA-like environment by blocking the JAK-STAT pathway in hDPCs.


Subject(s)
Alopecia Areata , Cell Proliferation , Hair Follicle , Interferon-gamma , Wnt Signaling Pathway , beta Catenin , Humans , Hair Follicle/drug effects , Hair Follicle/cytology , Hair Follicle/metabolism , Cell Proliferation/drug effects , Wnt Signaling Pathway/drug effects , Interferon-gamma/metabolism , beta Catenin/metabolism , Alopecia Areata/metabolism , Alopecia Areata/drug therapy , Alopecia Areata/pathology , Cells, Cultured , Glycogen Synthase Kinase 3 beta/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Janus Kinases/metabolism , Dermis/cytology , Dermis/drug effects , Phosphorylation/drug effects , STAT3 Transcription Factor/metabolism , Hair/drug effects , Hair/growth & development , Wnt-5a Protein/metabolism , Janus Kinase 1/metabolism , Signal Transduction/drug effects , STAT Transcription Factors/metabolism
2.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732058

ABSTRACT

Monitoring inflammatory cytokines is crucial for assessing healing process and photobiomodulation (PBM) enhances wound healing. Meanwhile, cAMP response element-binding protein (CREB) is a regulator of cellular metabolism and proliferation. This study explored potential links between inflammatory cytokines and the activity of CREB in PBM-treated wounds. A total of 48 seven-week-old male SD rats were divided into four groups (wound location, skin or oral; treatment method, natural healing or PBM treatment). Wounds with a 6 mm diameter round shape were treated five times with an 808 nm laser every other day (total 60 J). The wound area was measured with a caliper and calculated using the elliptical formula. Histological analysis assessed the epidermal regeneration and collagen expression of skin and oral tissue with H&E and Masson's trichrome staining. Pro-inflammatory (TNF-α) and anti-inflammatory (TGF-ß) cytokines were quantified by RT-PCR. The ratio of phosphorylated CREB (p-CREB) to unphosphorylated CREB was identified through Western blot. PBM treatment significantly reduced the size of the wounds on day 3 and day 7, particularly in the skin wound group (p < 0.05 on day 3, p < 0.001 on day 7). The density of collagen expression was significantly higher in the PBM treatment group (in skin wound, p < 0.05 on day 3, p < 0.001 on day 7, and p < 0.05 on day 14; in oral wound, p < 0.01 on day 7). The TGF-ß/TNF-α ratio and the p-CREB/CREB ratio showed a parallel trend during wound healing. Our findings suggested that the CREB has potential as a meaningful marker to track the wound healing process.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Low-Level Light Therapy , Rats, Sprague-Dawley , Wound Healing , Animals , Wound Healing/radiation effects , Low-Level Light Therapy/methods , Male , Rats , Cyclic AMP Response Element-Binding Protein/metabolism , Skin/metabolism , Skin/radiation effects , Skin/pathology , Skin/injuries , Cytokines/metabolism , Phosphorylation/radiation effects , Tumor Necrosis Factor-alpha/metabolism , Collagen/metabolism , Transforming Growth Factor beta/metabolism
3.
Adv Mater ; : e2400800, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593471

ABSTRACT

Following an initial nucleation stage at the flake level, atomically thin film growth of a van der Waals material is promoted by ultrafast lateral growth and prohibited vertical growth. To produce these highly anisotropic films, synthetic or post-synthetic modifications are required, or even a combination of both, to ensure large-area, pure-phase, and low-temperature deposition. A set of synthetic strategies is hereby presented to selectively produce wafer-scale tin selenides, SnSex (both x = 1 and 2), in the 2D forms. The 2D-SnSe2 films with tuneable thicknesses are directly grown via metal-organic chemical vapor deposition (MOCVD) at 200 °C, and they exhibit outstanding crystallinities and phase homogeneities and consistent film thickness across the entire wafer. This is enabled by excellent control of the volatile metal-organic precursors and decoupled dual-temperature regimes for high-temperature ligand cracking and low-temperature growth. In contrast, SnSe, which intrinsically inhibited from 2D growth, is indirectly prepared by a thermally driven phase transition of an as-grown 2D-SnSe2 film with all the benefits of the MOCVD technique. It is accompanied by the electronic n-type to p-type crossover at the wafer scale. These tailor-made synthetic routes will accelerate the low-thermal-budget production of multiphase 2D materials in a reliable and scalable fashion.

4.
Biomaterials ; 307: 122522, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38428092

ABSTRACT

Cellular skin substitutes such as epidermal constructs have been developed for various applications, including wound healing and skin regeneration. These cellular models are mostly derived from primary cells such as keratinocytes and fibroblasts in a two-dimensional (2D) state, and further development of three-dimensional (3D) cultured organoids is needed to provide insight into the in vivo epidermal phenotype and physiology. Here, we report the development of epidermal organoids (EpiOs) generated from induced pluripotent stem cells (iPSCs) as a novel epidermal construct and its application as a source of secreted biomolecules recovered by extracellular vesicles (EVs) that can be utilized for cell-free therapy of regenerative medicine. Differentiated iPSC-derived epidermal organoids (iEpiOs) are easily cultured and expanded through multiple organoid passages, while retaining molecular and functional features similar to in vivo epidermis. These mature iEpiOs contain epidermal stem cell populations and retain the ability to further differentiate into other skin compartment lineages, such as hair follicle stem cells. By closely recapitulating the epidermal structure, iEpiOs are expected to provide a more relevant microenvironment to influence cellular processes and therapeutic response. Indeed, iEpiOs can generate high-performance EVs containing high levels of the angiogenic growth factor VEGF and miRNAs predicted to regulate cellular processes such as proliferation, migration, differentiation, and angiogenesis. These EVs contribute to target cell proliferation, migration, and angiogenesis, providing a promising therapeutic tool for in vivo wound healing. Overall, the newly developed iEpiOs strategy as an organoid-based approach provides a powerful model for studying basic and translational skin research and may also lead to future therapeutic applications using iEpiOs-secreted EVs.


Subject(s)
Extracellular Vesicles , Pluripotent Stem Cells , Epidermis , Cell Differentiation , Organoids , Regeneration
5.
Medicine (Baltimore) ; 103(13): e37595, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552064

ABSTRACT

BACKGROUND: Skin grafting is a common method of treating damaged skin; however, surgical complications may arise in patients with poor health. Currently, no effective conservative treatment is available for extensive skin loss. Mature adipocytes, which constitute a substantial portion of adipose tissue, have recently emerged as a potential source of stemness. When de-lipidated, these cells exhibit fibroblast-like characteristics and the ability to redifferentiate, offering homogeneity and research utility as "dedifferentiated fat cells." METHODS AND RESULTS: We conducted an in vitro study to induce fibroblast-like traits in the adipose tissue by transdifferentiating mature adipocytes for skin regeneration. Human subcutaneous fat tissues were isolated and purified from mature adipocytes that underwent a transformation process over 14 days of cultivation. Microscopic analysis revealed lipid degradation over time, ultimately transforming cells into fibroblast-like forms. Flow cytometry was used to verify their characteristics, highlighting markers such as CD90 and CD105 (mesenchymal stem cell markers) and CD56 and CD106 (for detecting fibroblast characteristics). Administering dedifferentiated fat cells with transforming growth factor-ß at the identified optimal differentiation concentration of 5 ng/mL for a span of 14 days led to heightened expression of alpha smooth muscle actin and fibronectin, as evidenced by RNA and protein analysis. Meanwhile, functional validation through cell sorting demonstrated limited fibroblast marker expression in both treated and untreated cells after transdifferentiation by transforming growth factor-ß. CONCLUSION: Although challenges remain in achieving more effective transformation and definitive fibroblast differentiation, our trial could pave the way for a novel skin regeneration treatment strategy.


Subject(s)
Cell Dedifferentiation , Cell Transdifferentiation , Humans , Pilot Projects , Cell Dedifferentiation/physiology , Adipose Tissue , Adipocytes/metabolism , Cell Differentiation , Fibroblasts/metabolism , Transforming Growth Factors/metabolism , Cells, Cultured
6.
Skin Res Technol ; 30(3): e13627, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38481069

ABSTRACT

BACKGROUND: The concept of "skin boosters" has evolved, marking a shift from traditional uses of hyaluronic acid (HA) fillers primarily for augmenting skin volume to a more diverse application aimed at improving dermal conditions. Restylane Vital and other HA fillers have been repurposed to combat skin aging and wrinkles by delivering HA directly to the dermis. OBJECTIVES: This review aims to define the term "skin booster" and to discuss the various components that constitute skin boosters. It seeks to provide a comprehensive overview of the different ingredients used in skin boosters, their roles, and their impact on enhancing dermal conditions. METHODS: A comprehensive review was conducted, focusing on representative skin booster ingredients. The approach involved analyzing the different elements used in skin boosters and their specific roles in enhancing dermal improvement. RESULTS: The findings indicate that skin boosters, encompassing a range of ingredients, are effective in improving the condition of the skin's dermis. The review identifies key ingredients in skin boosters and their specific benefits, including hydration, elasticity improvement, and wrinkle reduction. CONCLUSIONS: Skin boosters represent a significant development in dermatological treatments, offering diverse benefits beyond traditional HA fillers. This review provides valuable insights into the constituents of skin boosters and their effectiveness, aiding readers in making informed decisions about these treatments. The potential of skin boosters in dermatological practice is considerable, warranting further research and application.


Subject(s)
Cosmetic Techniques , Dermal Fillers , Skin Aging , Humans , Skin , Rejuvenation , Hyaluronic Acid
7.
Nutrients ; 16(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38201986

ABSTRACT

The investigation focused on the impact of Withania somnifera (ashwagandha) extract (WSE) on age-related mechanisms affecting skeletal muscle sarcopenia-related muscle atrophy in aged mice. Beyond evaluating muscular aspects, the study explored chronic low-grade inflammation, muscle regeneration, and mitochondrial biogenesis. WSE administration, in comparison to the control group, demonstrated no significant differences in body weight, diet, or water intake, affirming its safety profile. Notably, WSE exhibited a propensity to reduce epidermal and abdominal fat while significantly increasing muscle mass at a dosage of 200 mg/kg. The muscle-to-fat ratio, adjusted for body weight, increased across all treatment groups. WSE administration led to a reduction in the pro-inflammatory cytokines TNF-α and IL-1ß, mitigating inflammation-associated muscle atrophy. In a 12-month-old mouse model equivalent to a 50-year-old human, WSE effectively preserved muscle strength, stabilized grip strength, and increased muscle tissue weight. Positive effects were observed in running performance and endurance. Mechanistically, WSE balanced muscle protein synthesis/degradation, promoted fiber differentiation, and enhanced mitochondrial biogenesis through the IGF-1/Akt/mTOR pathway. This study provides compelling evidence for the anti-sarcopenic effects of WSE, positioning it as a promising candidate for preventing sarcopenia pending further clinical validation.


Subject(s)
Plant Extracts , Sarcopenia , Withania , Humans , Animals , Mice , Infant , Middle Aged , Sarcopenia/drug therapy , Sarcopenia/prevention & control , Muscular Atrophy/drug therapy , Muscular Atrophy/etiology , Muscular Atrophy/prevention & control , Ethanol , Inflammation , Body Weight
8.
J Cosmet Dermatol ; 23(3): 830-838, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37877460

ABSTRACT

OBJECTIVES: Biological aspect and clinical research demonstrated that dual-frequency ultrasound (local dynamic micro-massage, LDM) waves of very high frequency can significantly modify cellular signaling providing anti-inflammatory and anti-fibrotic effects. During the recent past, these waves were successfully applied for the treatment of various inflammatory skin conditions, hypertrophic scars, and chronical wounds. Since the main complications after rhinoseptoplasty are caused by excessive inflammatory reactions and development of fibrosis along nasal implants which can lead to a revision rhinoseptoplasty, in this retrospective multicenter blinded study we have evaluated the efficacy of LDM ultrasound for the treatment of the postoperative perilesional ecchymosis and edema in patients after rhinoseptoplasty. METHODS: Twenty-four patients received daily LDM treatment (study group) for 5 days starting from the first day postoperative, whereas 24 patients (control group) were treated with conventional ice packs. Dynamic reduction of the postoperative perilesional ecchymosis and edema was followed up, and the total duration of these side effects was determined within specific paranasal anatomical areas. RESULTS: Post-rhinoseptoplasty ecchymosis and edema were observed in the areas of anterior cheek, lower eyelids, and upper eyelids. Duration of the postoperative perilesional edema was significantly reduced in the group treated with LDM (1.9 ± 0.9 days) compared with control group (4.5 ± 2.1 days). Duration of the ecchymosis was also significantly reduced in LDM group (2.8 ± 1.4 days) compared with controls (7.4 ± 2.8 days). Postoperative patient satisfaction in LDM-treated and control groups was 3.1 ± 1.3 and 1.5 ± 0.7, respectively, demonstrating significantly higher satisfaction in LDM-treated group. CONCLUSIONS: This study proved that the post-rhinoseptoplasty group treated with LDM ultrasound showed a significantly shorter duration of the postsurgical perilesional ecchymosis and edema, with no substantial adverse effects other than those observed in the control group. It can be suggested that ultrasound treatment can serve as an alternative option for the noninvasive management of postoperative perilesional ecchymosis and edema.


Subject(s)
Ecchymosis , Rhinoplasty , Humans , Ecchymosis/etiology , Ecchymosis/therapy , Edema/therapy , Edema/drug therapy , Nose/surgery , Postoperative Complications/etiology , Postoperative Complications/drug therapy , Rhinoplasty/methods
9.
J Korean Med Sci ; 38(46): e398, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38013650

ABSTRACT

Migrant workers face challenging working conditions, resulting in physical and mental vulnerability. The objective is to identify their health vulnerabilities and ensure their right to health. Health records of 163 migrant workers (113 males and 50 females) (Group A) and 163 Korean citizens (Group B) visiting our institution were analyzed from August 2021 to July 2022. Both groups underwent urine analysis, chest radiography, and various blood tests. Statistical analysis using independent t-tests and χ² tests was performed. Group A had a significantly higher rate of hepatitis B virus surface antigen-positive patients, lower vaccination rates for hepatitis B, and poorer nutritional status compared to Group B. Group B generally exhibited higher levels of albumin, glucose, total cholesterol, and thyroid-stimulating hormone. There were significant quantitative differences in multiple blood cell and hemoglobin measurements between the two groups. These findings emphasize the need for policy support and public awareness to protect the health rights of migrant workers.


Subject(s)
Health Services Accessibility , Transients and Migrants , Male , Female , Humans , Surveys and Questionnaires , Human Rights , Health Status , Republic of Korea
10.
Medicine (Baltimore) ; 102(40): e35517, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37800808

ABSTRACT

Comorbidities associated with psychiatric disorders often occur in patients with cancer. A causal effect of schizophrenia on cancer was observed using Mendelian randomization (MR) analysis. However, the causal effect of colorectal cancer on schizophrenia has not been studied using MR analysis. Therefore, we performed MR analysis to investigate the causal effects of colorectal cancer on schizophrenia. We performed "two-sample summary-data Mendelian randomization" using publicly available genome-wide association studies data to investigate the causal relationship between colorectal cancer (as exposure) and schizophrenia (as outcome). The inverse variance weighted method was used to calculate causal estimates. In 2 TSMR analyses, we reported that the odds ratios for schizophrenia per log odds increase in colorectal cancer risk were 6.48 (95% confidential interval [CI] of OR 1.75-24.03; P = .005) and 9.62 × 106 (95% CI of OR 1.13-8.22 × 1013; P = .048). Pleiotropic tests and sensitivity analysis demonstrated minimal horizontal pleiotropy and robustness of the causal relationship. We provide evidence for a causal relationship between the incidence of colorectal cancer and the development of schizophrenia through TSMR analysis.


Subject(s)
Colorectal Neoplasms , Schizophrenia , Humans , Schizophrenia/epidemiology , Schizophrenia/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Causality , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/genetics
11.
Food Sci Biotechnol ; 32(11): 1585-1594, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37637841

ABSTRACT

Wheat is cultivated worldwide and is the most widely distributed food crop. Wheat is a staple crop in many countries. However, the effects of various cultivation methods on the efficacy of wheat sprouts have not been determined. This study investigated wheat sprouts obtained using a standardized smart farm system (WS-S) to improve the effects of non-alcoholic fatty liver disease (NAFLD) and molecular mechanism. Wheat sprouts significantly attenuated the accumulation of lipid droplets in FFA-induced HepG2 cells through AMPK pathway activity. In vivo experiments showed that WS-S significantly lowered body weight gain and decreased adipose tissue, lipid, aspartate transaminase, and alanine aminotransferase levels in HFD/F-treated mice. Furthermore, WS-S stimulated the phosphorylation of ACC and peroxisome proliferator-activated receptor alpha via the AMPK pathway and inhibited SREBP-1/FAS signaling to inhibit de novo adipogenesis and increase fatty acid oxidation. These results suggest that WS-S ameliorates NAFLD by regulating fatty acid metabolism via the AMPK pathway.

12.
J Hazard Mater ; 459: 132238, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37586242

ABSTRACT

Particulate matter (PM), a major component of outdoor air pollution, damages DNA and increases the risk of cancer. Although the harmful effects of PM at the genomic level are known, the detailed mechanism by which PM affects chromosomal stability remains unclear. In this study, we investigated the novel effects of PM on mitotic progression and identified the underlying mechanisms. Gene set enrichment analysis of lung cancer patients residing in countries with high PM concentrations revealed the downregulation of genes associated with mitosis and mitotic structures. We also showed that exposure of lung cancer cells in vitro to urban dust particles (UDPs) inhibits cell proliferation through a prolonged M phase. The mitotic spindles in UDP-treated cells were hyperstabilized, and the number of centrioles increased. The rate of ingression of the cleavage furrow and actin clearance from the polar cortex was reduced significantly. The defects in mitotic progression were attributed to inactivation of Aurora B at kinetochore during early mitosis, and spindle midzone and midbody during late mitosis. While previous studies demonstrated possible links between PM and mitosis, they did not specifically identify the dysregulation of spatiotemporal dynamics of mitotic proteins and structures (e.g., microtubules, centrosomes, cleavage furrow, and equatorial and polar cortex), which results in the accumulation of chromosomal instability, ultimately contributing to carcinogenicity. The data highlight the novel scientific problem of PM-induced mitotic disruption. Additionally, we introduce a practical visual method for assessing the genotoxic outcomes of airborne pollutants, which has implications for future environmental and public health research.


Subject(s)
Dust , Lung Neoplasms , Humans , Aurora Kinase B/genetics , Aurora Kinase B/metabolism , Mitosis , Spindle Apparatus/metabolism , Particulate Matter/toxicity , Particulate Matter/metabolism , Lung Neoplasms/metabolism
13.
J Cosmet Dermatol ; 22(7): 2003-2007, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37218872

ABSTRACT

BACKGROUND: Enlarged facial pores are a common dermatological and cosmetic concern, which are difficult to treat because their pathogenesis is multifactorial. Many technological treatments have been developed to treat enlarged pores. Despite these efforts, enlarged pores remain problematic for many patients. OBJECTIVES: Microcoring technology has recently been developed to treat pores and serve as a leading primary treatment option to address these concerns. METHODS: Three patients underwent a single treatment of rotational fractional resection. The 0.5 mm diameter rotating scalpels were used to resect the skin pores in the cheek region. The resected site was evaluated 30 days after treatment, and the patients underwent scanning in bilateral 45° views at 60 cm from the face with the same brightness setting. RESULTS: The three patients improved in terms of enlarged pores and had no severe skin-related adverse effects. Furthermore, the three patients showed satisfactory treatment outcomes after 30 days of follow-up. CONCLUSION: Rotational fractional resection is a new concept that produces measurable permanent results for enlarged pore removal. These cosmetic procedures produced promising outcomes in a single treatment. However, the current clinical procedures trend demands minimally invasive treatment for enlarged pores.


Subject(s)
Cosmetics , Face , Humans , Skin/pathology , Cheek/surgery , Treatment Outcome
14.
Environ Pollut ; 329: 121715, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37120000

ABSTRACT

Fine particulate matter (PM2.5) is associated with public health problems worldwide. Especially, PM2.5 induces epigenetic and microenvironmental changes in lung cancer. Angiogenesis is important for the development and growth of cancer and is mediated by angiogenic factors, including vascular endothelial growth factor. However, the effects of mild PM2.5 exposure on angiogenesis in lung cancer remain unclear. In this study, we examined angiogenic effects using relatively lower concentrations of PM2.5 than in other studies and found that PM2.5 increased angiogenic activities in both endothelial cells and non-small cell lung carcinoma cells. PM2.5 also promoted the growth and angiogenesis of lung cancer via the induction of hypoxia-inducible factor-1α (HIF-1α) in a xenograft mouse tumor model. Angiogenic factors, including vascular endothelial growth factor (VEGF), were highly expressed in lung cancer patients in countries with high PM2.5 levels in the atmosphere, and high expression of VEGF in lung cancer patients lowered the survival rate. Collectively, these results provide new insight into the mechanisms by which mild exposure to PM2.5 is involved in HIF-1α-mediated angiogenesis in lung cancer patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Vascular Endothelial Growth Factor A/metabolism , Particulate Matter/toxicity , Endothelial Cells/metabolism , Cell Line, Tumor
15.
J Ginseng Res ; 46(1): 79-90, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35058728

ABSTRACT

BACKGROUND: Herbal medicines are popular approaches to capably prevent and treat obesity and its related diseases. Excessive exposure to dietary lipids causes oxidative stress and inflammation, which possibly induces cellular senescence and contribute the damaging effects in brain. The potential roles of selective enhanced ginsenoside in regulating high fat diet (HFD)-induced brain damage remain unknown. METHODS: The protection function of Ginsenoside F1-enhanced mixture (SGB121) was evaluated by in vivo and in vitro experiments. Human primary astrocytes and SH-SY5Y cells were treated with palmitic acid conjugated Bovine Serum Albumin, and the effects of SGB121 were determined by MTT and lipid uptake assays. For in vivo tests, C57BL/6J mice were fed with high fat diet for 3 months with or without SGB121 administration. Thereafter, immunohistochemistry, western blot, PCR and ELISA assays were conducted with brain tissues. RESULTS AND CONCLUSION: SGB121 selectively suppressed HFD-induced oxidative stress and cellular senescence in brain, and reduced subsequent inflammation responses manifested by abrogated secretion of IL-6, IL-1ß and TNFα via NF-κB signaling pathway. Interestingly, SGB121 protects against HFD-induced damage by improving mitophagy and endoplasmic reticulum-stress associated autophagy flux and inhibiting apoptosis. In addition, SGB121 regulates lipid uptake and accumulation by FATP4 and PPARα. SGB121 significantly abates excessively phosphorylated tau protein in the cortex and GFAP activation in corpus callosum. Together, our results suggest that SGB121 is able to favor the resistance of brain to HFD-induced damage, therefore provide explicit evidence of the potential to be a functional food.

16.
Medicine (Baltimore) ; 101(51): e32387, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36595792

ABSTRACT

Catastrophic incidents would necessitate the intervention of multiple specializations with plastic surgery (PS) as an indispensable area of expertise. In view of PS, prognostic assessment of trauma patients should be focused on the qualitative value rather than mortality because plastic surgeons rarely handled patients' vital signs in actual. Thus, we explored the association between the involvement of the PS department and qualitative prognoses for severe trauma patients. From November 2014 to December 2019, we enrolled total 529 trauma patients with an injury severity score (ISS) over 15 points. We set the prognostic factors that the rate of admission in intensive care unit (ICU), total or ICU duration of hospitalization, post-discharge progress and disability diagnosis which were regarded as qualitative prognoses. The analysis was performed with logistic regression analysis or regression analysis adjusted for age, sex, past medical history, cause of trauma, and frequency of operation. Among total of 529 patients, 290 patients in PS group and 239 patients in non-PS group were analyzed. In both groups, the under-65-year ages and male patients were significantly predominant. The rate of going home showed 2.082 times higher in PS group than non-PS group after adjusting for covariates, while there was no significant difference in diagnosis of disability. Meanwhile, overall prognoses were highly correlated with either higher ISS or lower Glasgow Coma Scale (GCS). In conclusion, higher severity generally affected to the severe trauma patient's prognoses, and the PS treatment only contributes to discharge disposition to home.


Subject(s)
Surgery, Plastic , Humans , Male , Aftercare , Trauma Centers , Patient Discharge , Retrospective Studies , Prognosis , Intensive Care Units , Glasgow Coma Scale , Injury Severity Score
17.
Foods ; 10(8)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34441742

ABSTRACT

Depending on the extraction method, numerous compounds that have specific pharmacological effects can be obtained from M. alba L. There is a growing scientific interest in health problems related to aging. Efforts to develop safe immune-enhancing pharmaceuticals are increasing. This review aims to summarize and critically discuss the immunity enhancement effects and pharmaceutical efficacy of M. alba L. extracts. The scientific database search was conducted using Google Scholar, Web of Science, and PubMed until May 2021. Additional articles were identified and obtained from references in the retrieved articles. Ethanol or methanol extraction of various parts of M. alba L. identified a large amount of phenols and flavonoids, which are effective for immunosuppression, antioxidants, and cardiovascular diseases, and are antibacterial, and anticancer. Water extraction of M. alba L. enhanced the innate immune response based on immune cell activation. A polysaccharide and an alkaloid related to increased macrophage activity were isolated from M. alba L. fruit extracts. M. alba L. fruit water extracts primarily induced the production of pro-inflammatory substances, in model organisms, via TLR4 in immune cells. Water extracts have been shown to be effective in pathogen defense and tumor suppression by enhancing macrophage activity. Based on our literature review on the bioactivity of M. alba L. fruit extracts, particularly in relation to their immunity enhancement activity, we anticipate that M. alba-derived pharmaceuticals will have excellent potential in future medical research.

18.
Article in English | MEDLINE | ID: mdl-32765626

ABSTRACT

Postmenopausal women have an increased risk of developing nonalcoholic fatty liver disease (NAFLD). We formulated a combination of three herb mixtures (HPC03) and observed lipid-lowering efficacy. HepG2 cells were treated with oleic acid to induce an NAFLD model (in vitro). Also, we investigated potential of HPC03 in an ovariectomize- (OVX-) induced NAFLD model (in vivo). We separated the mice into six groups, as follows: SHAM, OVX, OVX + ß-estradiol, and OVX + HPC03 (50, 100, and 200 mg/kg). Rats were administered with/without HPC03 for 12 weeks. HPC03 dose dependently inhibited the lipid accumulation involved in lipogenesis in HepG2 cells. The body weight, fat mass, and weights of the liver were decreased in the OVX group than that in the other groups. HPC03 had decreased adiposity that was induced by OVX. HPC03 treatment reduced liver lipid deposition and prevented the increase in serum and liver triglyceride export when there was a deficiency in estradiol. HPC03 improves OVX-induced fatty liver and lipid metabolism. These findings suggest that HPC03 from postmenopausal women has a protective effect during NAFLD conditions.

19.
J Food Prot ; 83(6): 984-990, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32034408

ABSTRACT

ABSTRACT: In this study, we developed a rapid on-site detection method by using direct ultrafast PCR coupled with a microfluidic chip to identify the presence of chicken meat in processed ground meat products. Chicken-specific PCR primer targeting mitochondrial 16S rRNA gene was newly designed, and its specificity was confirmed against 17 other animal species and 4 different chicken meat samples from different countries of origin. The sensitivity of the chicken-specific ultrafast PCR was 0.1 pg of chicken DNA. To evaluate the limit of detection of the direct ultrafast PCR method, different percentages of chicken meat mixed with pork or beef were prepared. The limit of detection of the direct ultrafast PCR method for the chicken meat-pork and chicken meat-beef mixtures was 0.1% for both raw meat and autoclaved meat. This method was used for 15 commercialized processed ground meat products. In this method, the target sequence was successfully amplified, and the presence of chicken meat in processed ground meat products was identified within approximately 25 min, including the time for sample preparation. Thus, our study shows that this developed direct ultrafast PCR method is a rapid and accurate method for on-site detection of chicken DNA in commercial food products.


Subject(s)
Meat Products , Animals , Cattle , Chickens , Meat/analysis , Meat Products/analysis , Polymerase Chain Reaction , RNA, Ribosomal, 16S
20.
Foods ; 9(2)2020 Jan 26.
Article in English | MEDLINE | ID: mdl-31991914

ABSTRACT

In this study, a donkey-specific primer pair and probe were designed from mitochondrial cytochrome b gene for the detection of raw donkey meat and different processed meat mixtures. The PCR product size for donkey DNA was 99 bp, and primer specificity was verified using 20 animal species. The limit of detection (LOD) was examined by serially diluting donkey DNA. Using real-time PCR, 0.001 ng of donkey DNA could be detected. In addition, binary meat mixtures with various percentages of donkey meat (0.001%, 0.01%, 0.1%, 1%, 10%, and 100%) in beef were analyzed to determine the sensitivity of this real-time PCR assay. At least 0.001% of donkey meat was detected in raw, boiled, roasted, dried, grinded, fried, and autoclaved meat mixtures. The developed real-time PCR method showed sufficient specificity and sensitivity in identification of donkey meat and could be a useful tool for the identification of donkey meat in processed products.

SELECTION OF CITATIONS
SEARCH DETAIL
...