Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Redox Biol ; 76: 103320, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39178731

ABSTRACT

Dopamine-modified hyaluronic acid (DA-HA) has been initially developed as an efficient coating and adhesion material for industrial uses. However, the biological activity and safety of DA-HA in the brain have not been explored yet. Here, we report a series of evidence that DA-HA exhibits similar functionality as dopamine (DA), but with much lower toxicity arising from autoxidation. DA-HA shows very little autoxidation even after 48-h incubation. This is profoundly different from DA and its derivatives including l-DOPA, which all induce severe neuronal death after pre-autoxidation, indicating that autoxidation is the cause of neuronal death. Furthermore, in vivo injection of DA-HA induces significantly lower toxicity compared to 6-OHDA, a well-known oxidized and toxic form of DA, and alleviates the apomorphine-induced rotational behavior in the 6-OHDA animal model of Parkinson's disease. Our study proposes that DA-HA with DA-like functionalities and minimal toxicity has a great potential to treat DA-related disease.

2.
Mol Brain ; 15(1): 90, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36397051

ABSTRACT

Dopamine (DA) plays a vital role in brain physiology and pathology such as learning and memory, motor control, neurological diseases, and psychiatric diseases. In neurons, it has been well established that DA increases or decreases intracellular cyclic AMP (cAMP) through D1-like or D2-like dopamine receptors, respectively. In contrast, it has been elusive how astrocytes respond to DA via Ca2+ signaling and regulate synaptic transmission and reward systems. Previous studies suggest various molecular targets such as MAO-B, D1R, or D1R-D2R heteromer to modulate astrocytic Ca2+ signaling. However, which molecular target is utilized under what physiological condition remains unclear. Here, we show that DA-induced astrocytic Ca2+ signaling pathway switches during development: MAO-B is the major player at a young age (5-6 weeks), whereas DA receptors (DARs) are responsible for the adult period (8-12 weeks). DA-mediated Ca2+ response in the adult period was decreased by either D1R or D2R blockers, which are primarily known for cyclic AMP signaling (Gs and Gi pathway, respectively), suggesting that this Ca2+ response might be mediated through Gq pathway by D1R-D2R heterodimer. Moreover, DAR-mediated Ca2+ response was not blocked by TTX, implying that this response is not a secondary response caused by neuronal activation. Our study proposes an age-specific molecular target of DA-induced astrocytic Ca2+ signaling: MAO-B in young mice and DAR in adult mice.


Subject(s)
Astrocytes , Calcium Signaling , Dopamine , Animals , Mice , Astrocytes/metabolism , Cyclic AMP/metabolism , Dopamine/metabolism , Monoamine Oxidase/metabolism , Receptors, Dopamine/metabolism
3.
Exp Neurobiol ; 31(5): 332-342, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36351843

ABSTRACT

Visuosocial memory is defined as stored visual information containing social context. Primates have a powerful ability to associate visuosocial memory with episodic memory. However, the existence of visuosocial memory in mice remains unclear. Here, we design a novel vision-specific social memory test using a portrait picture or mirrored self-image and demonstrate that mice can distinguish conspecific from other species by forming a visuosocial memory. Because CA2 hippocampus has been reported as a critical brain region for social memory, we develop CA2-specific blockade of memory formation through deletion of phospholipase C gamma 1 (PLCγ1), which is a key molecule in the brain-derived neurotrophic factor (BDNF) signaling pathway. Interestingly, these mice have intact sociability but impaired social memory in three chamber test and five-trial social memory test, which is highly dependent on visual information. Finally, PLCγ1 deletion in CA2 impairs visuosocial preference memory, but not avoidance memory, whereas non-social object recognition is intact. Our study proposes that mice have visuosocial memory, just as primates and humans.

4.
Neuron ; 110(3): 423-435.e4, 2022 02 02.
Article in English | MEDLINE | ID: mdl-34852235

ABSTRACT

Spatiotemporal control of brain activity by optogenetics has emerged as an essential tool to study brain function. For silencing brain activity, optogenetic probes, such as halorhodopsin and archaerhodopsin, inhibit transmitter release indirectly by hyperpolarizing membrane potentials. However, these probes cause an undesirable ionic imbalance and rebound spikes. Moreover, they are not applicable to use in non-excitable glial cells. Here we engineered Opto-vTrap, a light-inducible and reversible inhibition system to temporarily trap the transmitter-containing vesicles from exocytotic release. Light activation of Opto-vTrap caused full vesicle clusterization and complete inhibition of exocytosis within 1 min, which recovered within 30 min after light off. We found a significant reduction in synaptic and gliotransmission upon activation of Opto-vTrap in acute brain slices. Opto-vTrap significantly inhibited hippocampus-dependent memory retrieval with full recovery within an hour. We propose Opto-vTrap as a next-generation optogenetic silencer to control brain activity and behavior with minimal confounding effects.


Subject(s)
Optogenetics , Synaptic Transmission , Brain , Exocytosis , Hippocampus , Synaptic Transmission/physiology
5.
Biol Psychiatry ; 91(8): 740-752, 2022 04 15.
Article in English | MEDLINE | ID: mdl-34952697

ABSTRACT

BACKGROUND: NMDA receptor (NMDAR) hypofunction has been implicated in several psychiatric disorders with impairment of cognitive flexibility. However, the molecular mechanism of how NMDAR hypofunction with decreased NMDAR tone causes the impairment of cognitive flexibility has been minimally understood. Furthermore, it has been unclear whether hippocampal astrocytes regulate NMDAR tone and cognitive flexibility. METHODS: We employed cell type-specific genetic manipulations, ex vivo electrophysiological recordings, sniffer patch recordings, cutting-edge biosensor for norepinephrine, and behavioral assays to investigate whether astrocytes can regulate NMDAR tone by releasing D-serine and glutamate. Subsequently, we further investigated the role of NMDAR tone in heterosynaptic long-term depression, metaplasticity, and cognitive flexibility. RESULTS: We found that hippocampal astrocytes regulate NMDAR tone via BEST1-mediated corelease of D-serine and glutamate. Best1 knockout mice exhibited reduced NMDAR tone and impairments of homosynaptic and α1 adrenergic receptor-dependent heterosynaptic long-term depression, which leads to defects in metaplasticity and cognitive flexibility. These impairments in Best1 knockout mice can be rescued by hippocampal astrocyte-specific BEST1 expression or enhanced NMDAR tone through D-serine supplement. D-serine injection in Best1 knockout mice during initial learning rescues subsequent reversal learning. CONCLUSIONS: These findings indicate that NMDAR tone during initial learning is important for subsequent learning, and hippocampal NMDAR tone regulated by astrocytic BEST1 is critical for heterosynaptic long-term depression, metaplasticity, and cognitive flexibility.


Subject(s)
Astrocytes , Receptors, N-Methyl-D-Aspartate , Animals , Astrocytes/metabolism , Bestrophins/metabolism , Glutamic Acid/metabolism , Hippocampus/metabolism , Humans , Mice , Receptors, N-Methyl-D-Aspartate/physiology , Serine/metabolism
6.
Exp Mol Med ; 53(7): 1148-1158, 2021 07.
Article in English | MEDLINE | ID: mdl-34244591

ABSTRACT

Monoamine oxidase (MAO) is believed to mediate the degradation of monoamine neurotransmitters, including dopamine, in the brain. Between the two types of MAO, MAO-B has been believed to be involved in dopamine degradation, which supports the idea that the therapeutic efficacy of MAO-B inhibitors in Parkinson's disease can be attributed to an increase in extracellular dopamine concentration. However, this belief has been controversial. Here, by utilizing in vivo phasic and basal electrochemical monitoring of extracellular dopamine with fast-scan cyclic voltammetry and multiple-cyclic square wave voltammetry and ex vivo fluorescence imaging of dopamine with GRABDA2m, we demonstrate that MAO-A, but not MAO-B, mainly contributes to striatal dopamine degradation. In contrast, our whole-cell patch-clamp results demonstrated that MAO-B, but not MAO-A, was responsible for astrocytic GABA-mediated tonic inhibitory currents in the rat striatum. We conclude that, in contrast to the traditional belief, MAO-A and MAO-B have profoundly different roles: MAO-A regulates dopamine levels, whereas MAO-B controls tonic GABA levels.


Subject(s)
Dopamine/metabolism , Monoamine Oxidase/metabolism , gamma-Aminobutyric Acid/biosynthesis , Animals , Clorgyline/pharmacology , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Female , Male , Mice, Inbred C57BL , Molecular Imaging/methods , Monoamine Oxidase/analysis , Monoamine Oxidase Inhibitors/pharmacology , Patch-Clamp Techniques , Rats, Sprague-Dawley , Selegiline/pharmacology , gamma-Aminobutyric Acid/metabolism
7.
Exp Mol Med ; 53(5): 956-972, 2021 05.
Article in English | MEDLINE | ID: mdl-34035463

ABSTRACT

An ongoing pandemic of coronavirus disease 2019 (COVID-19) is now the greatest threat to global public health. Herbal medicines and their derived natural products have drawn much attention in the treatment of COVID-19, but the detailed mechanisms by which natural products inhibit SARS-CoV-2 have not been elucidated. Here, we show that platycodin D (PD), a triterpenoid saponin abundant in Platycodon grandiflorum (PG), a dietary and medicinal herb commonly used in East Asia, effectively blocks the two main SARS-CoV-2 infection routes via lysosome- and transmembrane protease serine 2 (TMPRSS2)-driven entry. Mechanistically, PD prevents host entry of SARS-CoV-2 by redistributing membrane cholesterol to prevent membrane fusion, which can be reinstated by treatment with a PD-encapsulating agent. Furthermore, the inhibitory effects of PD are recapitulated by the pharmacological inhibition or gene silencing of NPC1, which is mutated in patients with Niemann-Pick type C (NPC) displaying disrupted membrane cholesterol distribution. Finally, readily available local foods or herbal medicines containing PG root show similar inhibitory effects against SARS-CoV-2 infection. Our study proposes that PD is a potent natural product for preventing or treating COVID-19 and that briefly disrupting the distribution of membrane cholesterol is a potential novel therapeutic strategy for SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Saponins/pharmacology , Serine Endopeptidases/metabolism , Triterpenes/pharmacology , Virus Internalization/drug effects , Antiviral Agents/chemistry , COVID-19/metabolism , Cell Line , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Models, Molecular , Platycodon/chemistry , SARS-CoV-2/physiology , Saponins/chemistry , Triterpenes/chemistry
8.
Nat Neurosci ; 23(12): 1555-1566, 2020 12.
Article in English | MEDLINE | ID: mdl-33199896

ABSTRACT

Although the pathological contributions of reactive astrocytes have been implicated in Alzheimer's disease (AD), their in vivo functions remain elusive due to the lack of appropriate experimental models and precise molecular mechanisms. Here, we show the importance of astrocytic reactivity on the pathogenesis of AD using GiD, a newly developed animal model of reactive astrocytes, where the reactivity of astrocytes can be manipulated as mild (GiDm) or severe (GiDs). Mechanistically, excessive hydrogen peroxide (H2O2) originated from monoamine oxidase B in severe reactive astrocytes causes glial activation, tauopathy, neuronal death, brain atrophy, cognitive impairment and eventual death, which are significantly prevented by AAD-2004, a potent H2O2 scavenger. These H2O2--induced pathological features of AD in GiDs are consistently recapitulated in a three-dimensional culture AD model, virus-infected APP/PS1 mice and the brains of patients with AD. Our study identifies H2O2 from severe but not mild reactive astrocytes as a key determinant of neurodegeneration in AD.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Astrocytes/metabolism , Astrocytes/pathology , Hydrogen Peroxide/metabolism , Alzheimer Disease/psychology , Animals , Atrophy , Brain/pathology , Cell Death , Cognitive Dysfunction/pathology , Disease Models, Animal , Humans , Macrophage Activation , Mice , Mice, Neurologic Mutants , Mice, Transgenic , Monoamine Oxidase/metabolism , Nerve Degeneration/pathology , Neuroglia , Neurons/pathology , Spatial Memory , Tauopathies/pathology
9.
Neuron ; 108(4): 691-706.e10, 2020 11 25.
Article in English | MEDLINE | ID: mdl-32905785

ABSTRACT

Sensory discrimination is essential for survival. However, how sensory information is finely controlled in the brain is not well defined. Here, we show that astrocytes control tactile acuity via tonic inhibition in the thalamus. Mechanistically, diamine oxidase (DAO) and the subsequent aldehyde dehydrogenase 1a1 (Aldh1a1) convert putrescine into GABA, which is released via Best1. The GABA from astrocytes inhibits synaptically evoked firing at the lemniscal synapses to fine-tune the dynamic range of the stimulation-response relationship, the precision of spike timing, and tactile discrimination. Our findings reveal a novel role of astrocytes in the control of sensory acuity through tonic GABA release.


Subject(s)
Astrocytes/physiology , Neural Inhibition/physiology , Thalamus/physiology , Touch Perception/physiology , gamma-Aminobutyric Acid/physiology , Aldehyde Dehydrogenase 1 Family/metabolism , Amine Oxidase (Copper-Containing)/metabolism , Animals , Astrocytes/metabolism , Astrocytes/ultrastructure , Bestrophins/biosynthesis , Bestrophins/genetics , Female , GABA Antagonists , Immunohistochemistry , Inhibitory Postsynaptic Potentials/physiology , Macrolides/pharmacology , Male , Mice , Mice, Knockout , Microscopy, Electron , Neurons/metabolism , Neurons/physiology , Patch-Clamp Techniques , Picrotoxin/pharmacology , Primary Cell Culture , Pyridazines/pharmacology , RNA, Small Interfering/pharmacology , Retinal Dehydrogenase/metabolism , gamma-Aminobutyric Acid/biosynthesis , gamma-Aminobutyric Acid/pharmacology
10.
Curr Biol ; 30(2): 276-291.e9, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31928877

ABSTRACT

Current pharmacological treatments for Parkinson's disease (PD) are focused on symptomatic relief, but not on disease modification, based on the strong belief that PD is caused by irreversible dopaminergic neuronal death. Thus, the concept of the presence of dormant dopaminergic neurons and its possibility as the disease-modifying therapeutic target against PD have not been explored. Here we show that optogenetic activation of substantia nigra pars compacta (SNpc) neurons alleviates parkinsonism in acute PD animal models by recovering tyrosine hydroxylase (TH) from the TH-negative dormant dopaminergic neurons, some of which still express DOPA decarboxylase (DDC). The TH loss depends on reduced dopaminergic neuronal firing under aberrant tonic inhibition, which is attributed to excessive astrocytic GABA. Blocking the astrocytic GABA synthesis recapitulates the therapeutic effect of optogenetic activation. Consistently, SNpc of postmortem PD patients shows a significant population of TH-negative/DDC-positive dormant neurons surrounded by numerous GABA-positive astrocytes. We propose that disinhibiting dormant dopaminergic neurons by blocking excessive astrocytic GABA could be an effective therapeutic strategy against PD.


Subject(s)
Astrocytes/metabolism , Dopaminergic Neurons/physiology , Nerve Degeneration/physiopathology , Parkinson Disease/physiopathology , Tyrosine 3-Monooxygenase/metabolism , Aged , Aged, 80 and over , Animals , Disease Models, Animal , Down-Regulation , Female , Humans , Immobility Response, Tonic/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Middle Aged , Parkinson Disease/therapy , Rats , Rats, Wistar , Tyrosine 3-Monooxygenase/antagonists & inhibitors , gamma-Aminobutyric Acid/biosynthesis
11.
Proc Natl Acad Sci U S A ; 115(19): 5004-5009, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29691318

ABSTRACT

Tonic inhibition in the brain is mediated through an activation of extrasynaptic GABAA receptors by the tonically released GABA, resulting in a persistent GABAergic inhibitory action. It is one of the key regulators for neuronal excitability, exerting a powerful action on excitation/inhibition balance. We have previously reported that astrocytic GABA, synthesized by monoamine oxidase B (MAOB), mediates tonic inhibition via GABA-permeable bestrophin 1 (Best1) channel in the cerebellum. However, the role of astrocytic GABA in regulating neuronal excitability, synaptic transmission, and cerebellar brain function has remained elusive. Here, we report that a reduction of tonic GABA release by genetic removal or pharmacological inhibition of Best1 or MAOB caused an enhanced neuronal excitability in cerebellar granule cells (GCs), synaptic transmission at the parallel fiber-Purkinje cell (PF-PC) synapses, and motor performance on the rotarod test, whereas an augmentation of tonic GABA release by astrocyte-specific overexpression of MAOB resulted in a reduced neuronal excitability, synaptic transmission, and motor performance. The bidirectional modulation of astrocytic GABA by genetic alteration of Best1 or MAOB was confirmed by immunostaining and in vivo microdialysis. These findings indicate that astrocytes are the key player in motor coordination through tonic GABA release by modulating neuronal excitability and could be a good therapeutic target for various movement and psychiatric disorders, which show a disturbed excitation/inhibition balance.


Subject(s)
Astrocytes/metabolism , Cerebellum/metabolism , Psychomotor Performance/physiology , Purkinje Cells/metabolism , Synaptic Transmission/physiology , gamma-Aminobutyric Acid/metabolism , Animals , Astrocytes/cytology , Bestrophins/genetics , Bestrophins/metabolism , Cerebellum/cytology , Mice, Inbred BALB C , Mice, Knockout , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Purkinje Cells/cytology , gamma-Aminobutyric Acid/genetics
12.
Sci Rep ; 6: 33694, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27640722

ABSTRACT

Brain-derived neurotrophic factor (BDNF) plays a critical role in cognitive processes including learning and memory. However, it has been difficult to detect BDNF in the brains of behaving animals because of its extremely low concentration, i.e., at the sub-nanogram/mL level. Here, we developed an interdigitated microelectrode (IME) biosensor coated with an anti-BDNF an anti-BDNF antibody in a polydimethylsiloxane (PDMS)-based microfluidic channel chip. This sensor could detect BDNF from microliter volumes of liquid samples even at femtogram/mL concentrations with high selectivity over other growth factors. Using this biosensor, we examined whether BDNF is detectable from periodical collection of cerebrospinal fluid microdialysate, sampled every 10 min from the hippocampus of mice during the context-dependent fear-conditioning test. We found that the IME biosensor could detect a significant increase in BDNF levels after the memory task. This increase in BDNF levels was prevented by gene silencing of BDNF, indicating that the IME biosensor reliably detected BDNF in vivo. We propose that the IME biosensor provides a general-purpose probe for ultrasensitive detection of biomolecules with low abundance in the brains of behaving animals.


Subject(s)
Biosensing Techniques/methods , Brain-Derived Neurotrophic Factor/metabolism , Brain/metabolism , Movement , Animals , Brain-Derived Neurotrophic Factor/cerebrospinal fluid , Dialysis , Electric Impedance , Gene Silencing , Lentivirus/metabolism , Mice , Microelectrodes , RNA, Small Interfering/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL