Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 8(3): 3031-41, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24575951

ABSTRACT

Metal nanoparticle (NP)-graphene multifunctional platforms are of great interest for exploring strong light-graphene interactions enhanced by plasmons and for improving performance of numerous applications, such as sensing and catalysis. These platforms can also be used to carry out fundamental studies on charge transfer, and the findings can lead to new strategies for doping graphene. There have been a large number of studies on noble metal Au-graphene and Ag-graphene platforms that have shown their potential for a number of applications. These studies have also highlighted some drawbacks that must be overcome to realize high performance. Here we demonstrate the promise of plasmonic gallium (Ga) nanoparticle (NP)-graphene hybrids as a means of modulating the graphene Fermi level, creating tunable localized surface plasmon resonances and, consequently, creating high-performance surface-enhanced Raman scattering (SERS) platforms. Four prominent peculiarities of Ga, differentiating it from the commonly used noble (gold and silver) metals are (1) the ability to create tunable (from the UV to the visible) plasmonic platforms, (2) its chemical stability leading to long-lifetime plasmonic platforms, (3) its ability to n-type dope graphene, and (4) its weak chemical interaction with graphene, which preserves the integrity of the graphene lattice. As a result of these factors, a Ga NP-enhanced graphene Raman intensity effect has been observed. To further elucidate the roles of the electromagnetic enhancement (or plasmonic) mechanism in relation to electron transfer, we compare graphene-on-Ga NP and Ga NP-on-graphene SERS platforms using the cationic dye rhodamine B, a drug model biomolecule, as the analyte.

2.
Nano Lett ; 13(6): 2837-41, 2013 Jun 12.
Article in English | MEDLINE | ID: mdl-23659187

ABSTRACT

Self-assembled arrays of hemispherical gallium nanoparticles deposited by molecular beam epitaxy on a sapphire support are explored as a new type of substrate for ultraviolet plasmonics. Spin-casting a 5 nm film of crystal violet upon these nanoparticles permitted the demonstration of surface-enhanced Raman spectra, fluorescence, and degradation following excitation by a HeCd laser operating at 325 nm. Measured local Raman enhancement factors exceeding 10(7) demonstrate the potential of gallium nanoparticle arrays for plasmonically enhanced ultraviolet detection and remediation.

3.
Small ; 8(17): 2721-30, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-22674808

ABSTRACT

Graphene is emerging as a promising material for plasmonics applications due to its strong light-matter interactions, most of which are theoretically predicted but not yet experimentally realized. Therefore, the integration of plasmonic nanoparticles to create metal nanoparticle/graphene composites enables numerous phenomena important for a range of applications from photonics to catalysis. For these applications it is important to articulate the coupling of photon-based excitations such as the interaction between plasmons in each of the material components, as well as their charge-based interactions dependent upon the energy alignment at the metal/graphene interface. These coupled phenomena underpin an active application area in graphene-based composites due to nanoparticle-dependent surface-enhanced Raman scattering (SERS) of graphene phonon modes. This study reveals the coupling of a graphene/SiC support with Ga-nanoparticle-localized surface plasmon resonance, which is of particular interest due to its ability to be tuned across the UV into the near-IR region. This work is the first demonstration of the evolving plasmon resonance on graphene during the synthesis of surface-supported metal nanoparticles, thus providing evidence for the theoretically predicted screening revealed by a damped resonance with little energy shift. Therefore, the role of the graphene/substrate heterojunction in tailoring the plasmon resonance for nanoplasmonic applications is shown. Additionally, the coupled phenomena between the graphene-Ga plasmon properties, charge transfer, and SERS of graphene vibrational modes are explored.

4.
Langmuir ; 28(2): 1235-45, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22133105

ABSTRACT

Attaching functional molecules such as thiols and proteins to semiconductor surfaces is increasingly exploited in functional devices such as sensors. Despite extensive research to understand this interface and demonstrate a robust protocol for attachment, the bonding chemistry of thiolates to III-V surfaces has been under great debate in the literature. This study provides a comprehensive chemical model for the attachment of thiols to InAs, an increasingly device-relevant III-V semiconductor, using cysteamine as a model molecule. We examine the attachment of cysteamine to InAs via the thiol group using X-ray photoelectron spectroscopy and spectroscopic ellipsometry and confirm that thiolate bonding to the substrate occurs preferentially to As sites over In sites as a limit. These experiments explore the interplay of the native oxide chemical properties, the cysteamine concentration, and the evolving InAs surface chemistry with functionalization. The thiol-InAs interaction can be framed as a general acid-base reaction, where the nucleophilic and/or electrophilic attack of the surface (i.e., binding to In sites and/or As sites) depends on the acidity of the thiol. The roles of the initial oxide composition, the solvent of the functionalizing solution, and the cysteamine as a limiting reagent in fully displacing the oxide and creating In-S and As-S bonds are highlighted.

5.
Nano Lett ; 11(9): 3531-7, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21848270

ABSTRACT

Numerical analyses of the ultraviolet and visible plasmonic spectra measured from hemispherical gallium nanostructures on dielectric substrates reveal that resonance frequencies are quite sensitive to illumination angle and polarization in a way that depends on nanostructure size, shape, and substrate. Large, polarization-dependent splittings arise from the broken symmetry of hemispherical gallium nanoparticles on sapphire substrates, inducing strong interactions with the substrate that depend sensitively on the angle of illumination and the nanoparticle diameter.


Subject(s)
Gallium/chemistry , Nanotechnology/methods , Aluminum Oxide/chemistry , Materials Testing , Nanoparticles/chemistry , Particle Size , Ultraviolet Rays
7.
J Am Chem Soc ; 131(34): 12032-3, 2009 Sep 02.
Article in English | MEDLINE | ID: mdl-19655747

ABSTRACT

Size-controlled gallium nanoparticles deposited on sapphire were explored as alternative substrates to enhance Raman spectral signatures. Gallium's resilience following oxidation is inherently advantageous in comparison with silver for practical ex vacuo nonsolution applications. Ga nanoparticles were grown using a simple molecular beam epitaxy-based fabrication protocol, and monitoring their corresponding surface plasmon resonance energy through in situ spectroscopic ellipsometry allowed the nanoparticles to be easily controlled for size. The Raman spectra obtained from cresyl fast violet (CFV) deposited on substrates with differing mean nanoparticle sizes represent the first demonstration of enhanced Raman signals from reproducibly tunable self-assembled Ga nanoparticles. Nonoptimized aggregate enhancement factors of approximately 80 were observed from the substrate with the smallest Ga nanoparticles for CFV dye solutions down to a dilution of 10 ppm.


Subject(s)
Gallium/chemistry , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Aluminum Oxide/chemistry , Surface Properties , Temperature
8.
Langmuir ; 25(2): 924-30, 2009 Jan 20.
Article in English | MEDLINE | ID: mdl-19105600

ABSTRACT

Ga nanoparticles supported on large band gap semiconductors like SiC, GaN, and ZnO are interesting for plasmon-enhanced UV-emitting solid-state devices. We investigate the influence of the polarity of the SiC, GaN, and ZnO wurtzite semiconductors on the wetting of Ga nanoparticles and on the resulting surface plasmon resonance (SPR) by exploiting real time plasmonic ellipsometry. The interface potential between polar semiconductors (SiC, GaN, and ZnO) and plasmonic nanoparticles (gallium) is shown to influence nanoparticle formation dynamics, geometry, and consequently the SPR wavelength. We invoke the Lippman electrowetting framework to elucidate the mechanisms controlling nanoparticle dynamics and experimentally demonstrate that the charge transfer at the Ga nanoparticle/polar semiconductor interface is an intrinsic method for tailoring the nanoparticle plasmon resonance. Therefore, the present data demonstrate that for supported nanoparticles, surface and interface piezoelectric charge of polar semiconductors also affects SPR along with the well-known effect of the media refractive index.

SELECTION OF CITATIONS
SEARCH DETAIL
...