Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Adv Healthc Mater ; : e2400622, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820600

ABSTRACT

Virion-mediated outbreaks are imminent and despite rapid responses, continue to cause adverse symptoms and death. Therefore, tunable, sensitive, high-throughput assays are needed to help diagnose future virion-mediated outbreaks. Herein, it is developed a tunable in situ assay to selectively enrich virions and extracellular vesicles (EVs) and simultaneously detect antigens and nucleic acids at a single-particle resolution. The Biochip Antigen and RNA Assay (BARA) enhanced sensitivities compared to quantitative reverse-transcription polymerase chain reaction (qRT-PCR), enabling the detection of virions in asymptomatic patients, genetic mutations in single virions, and enabling the continued long-term expression of viral RNA in the EV-enriched subpopulation in the plasma of patients with post-acute sequelae of the coronavirus disease of 2019 (COVID-19). BARA revealed highly accurate diagnoses of COVID-19 by simultaneously detecting the spike glycoprotein and nucleocapsid-encoding RNA in saliva and nasopharyngeal swab samples. Altogether, the single-particle detection of antigens and viral RNA provides a tunable framework for the diagnosis, monitoring, and mutation screening of current and future outbreaks.

2.
J Microbiol ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814539

ABSTRACT

The emergence of resistance against the last-resort antibiotic vancomycin in staphylococcal infections is a serious concern for human health. Although various drug-resistant pathogens of diverse genetic backgrounds show higher virulence potential, the underlying mechanism behind this is not yet clear due to variability in their genetic dispositions. In this study, we investigated the correlation between resistance and virulence in adaptively evolved isogenic strains. The vancomycin-susceptible Staphylococcus aureus USA300 was exposed to various concentrations of vancomycin repeatedly as a mimic of the clinical regimen to obtain mutation(s)-accrued-clonally-selected (MACS) strains. The phenotypic analyses followed by expression of the representative genes responsible for virulence and resistance of MACS strains were investigated. MACS strains obtained under 2 and 8 µg/ml vancomycin, named Van2 and Van8, respectively; showed enhanced vancomycin minimal inhibitory concentrations (MIC) to 4 and 16 µg/ml, respectively. The cell adhesion and invasion of MACS strains increased in proportion to their MICs. The correlation between resistance and virulence potential was partially explained by the differential expression of genes known to be involved in both virulence and resistance in MACS strains compared to parent S. aureus USA300. Repeated treatment of vancomycin against vancomycin-susceptible S. aureus (VSSA) leads to the emergence of vancomycin-resistant strains with variable levels of enhanced virulence potentials.

3.
bioRxiv ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38659953

ABSTRACT

Obesity is a global health crisis that contributes to morbidity and mortality worldwide. Obesity's comorbid association with a variety of diseases, from metabolic syndrome to neurodegenerative disease, underscores the critical need to better understand the pathobiology of obesity. Adipose tissue, once seen as an inert storage depot, is now recognized as an active endocrine organ, regulating metabolic and systemic homeostasis. Recent studies spotlight the theranostic utility of extracellular vesicles (EVs) as novel biomarkers and drivers of disease, including obesity-related complications. Adipose-derived EVs (ADEVs) have garnered increased interest for their roles in diverse diseases, however robust isolation and characterization protocols for human, cell-specific EV subsets are limited. Herein, we directly address this technical challenge by establishing a multiparametric analysis framework that leverages bulk and single EV characterization, mRNA phenotyping and proteomics of human ADEVs directly from paired visceral adipose tissue, cultured mature adipocyte conditioned media, and plasma from obese subjects undergoing bariatric surgery. Importantly, rigorous EV phenotyping at the tissue and cell-specific level identified top 'adipose liquid biopsy' candidates that were validated in circulating plasma EVs from the same patient. In summary, our study paves the way toward a tissue and cell-specific, multiparametric framework for studying tissue and circulating adipose EVs in obesity-driven disease.

4.
bioRxiv ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38464234

ABSTRACT

Optical and non-optical techniques propelled the field of single extracellular particle (EP) research through phenotypic and morphological analyses, revealing the similarities, differences, and co-isolation of EP subpopulations. Overcoming the challenges of optical and non-optical techniques motivates the use of orthogonal techniques while analyzing extracellular particles (EPs), which require varying concentrations and preparations. Herein, we introduce the nano-positioning matrix (NPMx) technique capable of superimposing optical and non-optical modalities for a single-EP orthogonal analysis. The NPMx technique is realized by ultraviolet-mediated micropatterning to reduce the stochasticity of Brownian motion. While providing a systematic orthogonal measurement of a single EP via total internal reflection fluorescence microscopy and transmission electron microscopy, the NPMx technique is compatible with low-yield samples and can be utilized for non-biased electrostatic capture and enhanced positive immunogold sorting. The success of the NPMx technique thus provides a novel platform by marrying already trusted optical and non-optical techniques at a single-EP resolution.

5.
J Neurosci Res ; 102(2): e25305, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38361418

ABSTRACT

Brain imaging work aimed at increased classification of dyslexia has underscored an important relationship between anterior (i.e., the inferior frontal gyrus; IFG) and posterior (i.e., superior temporal gyrus and supramarginal gyrus) brain regions. The extent to which the three components of the inferior frontal gyrus, namely the pars orbitalis, triangularis, and opercularis, are differentially related to the posterior regions, namely the superior temporal gyrus and supramarginal gyrus, needs further elucidation. Information about the nature of the anterior-posterior connections would facilitate our understanding of the neural underpinnings associated with dyslexia. Adult participants (N = 38; 16 with dyslexia) took part in an MRI study, whereby high-resolution structural scans were obtained. Volumetric asymmetry of the three regions of the IFG, the superior temporal gyrus, and the supramarginal gyrus was extracted. Significant differences were found for each of the three IFG regions, such that skilled readers had a greater leftward asymmetry of the orbitalis and triangularis, and greater rightward asymmetry of the opercularis, when compared to individuals with dyslexia. Furthermore, the pars triangularis was significantly associated with leftward asymmetry of the superior temporal gyrus for skilled but not dyslexic participants. For individuals with dyslexia, the cortical asymmetry of the IFG, and the corresponding connections with other reading-related brain regions, is inherently different from skilled readers. We discuss our findings in the context of the print-to-speech framework to further our understanding of the neural underpinnings associated with dyslexia.


Subject(s)
Dyslexia , Gray Matter , Adult , Humans , Gray Matter/diagnostic imaging , Dyslexia/diagnostic imaging , Brain , Reading , Prefrontal Cortex , Brain Mapping , Magnetic Resonance Imaging/methods
6.
Int J Biol Macromol ; 258(Pt 1): 128763, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38103675

ABSTRACT

The small heat-shock protein (sHSP) from the archaea Methanocaldococcus jannaschii, MjsHSP16.5, functions as a broad substrate ATP-independent holding chaperone protecting misfolded proteins from aggregation under stress conditions. This protein is the first sHSP characterized by X-ray crystallography, thereby contributing significantly to our understanding of sHSPs. However, despite numerous studies assessing its functions and structures, the precise arrangement of the N-terminal domains (NTDs) within this sHSP cage remains elusive. Here we present the cryo-electron microscopy (cryo-EM) structure of MjsHSP16.5 at 2.49-Å resolution. The subunits of MjsHSP16.5 in the cryo-EM structure exhibit lesser compaction compared to their counterparts in the crystal structure. This structural feature holds particular significance in relation to the biophysical properties of MjsHSP16.5, suggesting a close resemblance to this sHSP native state. Additionally, our cryo-EM structure unveils the density of residues 24-33 within the NTD of MjsHSP16.5, a feature that typically remains invisible in the majority of its crystal structures. Notably, these residues show a propensity to adopt a ß-strand conformation and engage in antiparallel interactions with strand ß1, both intra- and inter-subunit modes. These structural insights are corroborated by structural predictions, disulfide bond cross-linking studies of Cys-substitution mutants, and protein disaggregation assays. A comprehensive understanding of the structural features of MjsHSP16.5 expectedly holds the potential to inspire a wide range of interdisciplinary applications, owing to the renowned versatility of this sHSP as a nanoscale protein platform.


Subject(s)
Heat-Shock Proteins, Small , Heat-Shock Proteins, Small/chemistry , Heat-Shock Proteins/metabolism , Cryoelectron Microscopy , Methanocaldococcus/metabolism , Molecular Chaperones/metabolism
7.
NPJ Sci Learn ; 8(1): 55, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057350

ABSTRACT

We argue that the feedback traditionally used to indicate negative outcomes causes future detrimental performance because of the default goal of win maximization. In gaming paradigms where participants intentionally performed as well (win maximization) and as poorly (loss maximization) as possible, we showed a double dissociation where actions following wins were more consistent during win maximization, but actions following losses were more consistent during loss maximization. This broader distinction between goal-congruent and goal-incongruent feedback suggests that individuals are able to flexibly redefine their definition of 'success', and provide a reconsideration of the way we think about 'losing'.

8.
Front Cell Infect Microbiol ; 13: 1268044, 2023.
Article in English | MEDLINE | ID: mdl-38029271

ABSTRACT

The emergence of bactericidal antibiotic-resistant strains has increased the demand for alternative therapeutic agents, such as antivirulence agents targeting the virulence regulators of pathogens. Staphylococcus aureus exoprotein expression (sae) locus, the master regulator of virulence gene expression in multiple drug-resistant S. aureus, is a promising therapeutic target. In this study, we screened a small-molecule library using a SaeRS green fluorescent protein (GFP)-reporter that responded to transcription controlled by the sae locus. We identified the compound, N-(2-methylcyclohexyl)-11-oxo-10,11-dihydrodibenzo[b,f][1,4]thiazepine-8-carboxamide (SKKUCS), as an efficient repressor of sae-regulated GFP activity. SKKUCS inhibited hemolysin production and reduced α-hemolysin-mediated cell lysis. Moreover, SKKUCS substantially reduced the expression levels of various virulence genes controlled by the master regulators, sae, and the accessory gene regulator (agr), demonstrating its potential as an antivirulence reagent targeting the key virulence regulators. Furthermore, autokinase inhibition assay and molecular docking suggest that SKKUCS inhibits the kinase activity of SaeS and potentially targets the active site of SaeS kinase, possibly inhibiting ATP binding. Next, we evaluated the efficacy and toxicity of SKKUCS in vivo using murine models of staphylococcal intraperitoneal and skin infections. Treatment with SKKUCS markedly increased animal survival and significantly decreased the bacterial burden in organs and skin lesion sizes. These findings highlight SKKUCS as a potential antivirulence drug for drug-resistant staphylococcal infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Mice , Virulence/genetics , Staphylococcus aureus , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Molecular Docking Simulation , Virulence Factors/metabolism , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
9.
Front Mol Biosci ; 10: 1288686, 2023.
Article in English | MEDLINE | ID: mdl-38033388

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major global health concern associated with millions of fatalities worldwide. Mutant variants of the virus have further exacerbated COVID-19 mortality and infection rates, emphasizing the urgent need for effective preventive strategies. Understanding the viral infection mechanism is crucial for developing therapeutics and vaccines. The entry of SARS-CoV-2 into host cells is a key step in the infection pathway and has been targeted for drug development. Despite numerous reviews of COVID-19 and the virus, there is a lack of comprehensive reviews focusing on the structural aspects of viral entry. In this review, we analyze structural changes in Spike proteins during the entry process, dividing the entry process into prebinding, receptor binding, proteolytic cleavage, and membrane fusion steps. By understanding the atomic-scale details of viral entry, we can better target the entry step for intervention strategies. We also examine the impacts of mutations in Spike proteins, including the Omicron variant, on viral entry. Structural information provides insights into the effects of mutations and can guide the development of therapeutics and vaccines. Finally, we discuss available structure-based approaches for the development of therapeutics and vaccines. Overall, this review provides a detailed analysis of the structural aspects of SARS-CoV-2 viral entry, highlighting its significance in the development of therapeutics and vaccines against COVID-19. Therefore, our review emphasizes the importance of structural information in combating SARS-CoV-2 infection.

10.
J Extracell Vesicles ; 12(11): e12369, 2023 11.
Article in English | MEDLINE | ID: mdl-37908159

ABSTRACT

The molecular heterogeneity of extracellular vesicles (EVs) and the co-isolation of physically similar particles, such as lipoproteins (LPs), confounds and limits the sensitivity of EV bulk biomarker characterization. Herein, we present a single-EV and particle (siEVP) protein and RNA assay (siEVP PRA) to simultaneously detect mRNAs, miRNAs, and proteins in subpopulations of EVs and LPs. The siEVP PRA immobilizes and sorts particles via positive immunoselection onto micropatterns and focuses biomolecular signals in situ. By detecting EVPs at a single-particle resolution, the siEVP PRA outperformed the sensitivities of bulk-analysis benchmark assays for RNA and protein. To assess the specificity of RNA detection in complex biofluids, EVs from various glioma cell lines were processed with small RNA sequencing, whereby two mRNAs and two miRNAs associated with glioblastoma multiforme (GBM) were chosen for cross-validation. Despite the presence of single-EV-LP co-isolates in serum, the siEVP PRA detected GBM-associated vesicular RNA profiles in GBM patient siEVPs. The siEVP PRA effectively examines intravesicular, intervesicular, and interparticle heterogeneity with diagnostic promise.


Subject(s)
Extracellular Vesicles , Glioblastoma , MicroRNAs , Humans , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Lipopolysaccharides , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger , Lipoproteins , Glioblastoma/diagnosis , Glioblastoma/genetics
12.
ACS Sens ; 6(9): 3445-3450, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34505501

ABSTRACT

Accurate single virus detection is critical for disease diagnosis and early prevention, especially in view of current pandemics. Numerous detection methods have been proposed with the single virus sensitivity, including the optical approaches and immunoassays. However, few of them hitherto have the capability of both trapping and detection of single viruses in the microchannel. Here, we report an optofluidic potential well array to trap nanoparticles stably in the flow stream. The nanoparticle is bound with single viruses and fluorescence quantum dots through an immunolabeling protocol. Single viruses can be swiftly captured in the microchannel by optical forces and imaged by a camera. The number of viruses in solution and on each particle can be quantified via image processing. Our method can trap and detect single viruses in the 1 mL serum or water in 2 h, paving an avenue for the advanced, fast, and accurate clinical diagnosis, as well as the study of virus infectivity, mutation, drug inhibition, etc.


Subject(s)
Micromanipulation , Viruses , Micromanipulation/instrumentation , Viruses/isolation & purification
13.
Cytometry A ; 99(11): 1123-1133, 2021 11.
Article in English | MEDLINE | ID: mdl-33550703

ABSTRACT

Imaging flow cytometry has become a popular technology for bioparticle image analysis because of its capability of capturing thousands of images per second. Nevertheless, the vast number of images generated by imaging flow cytometry imposes great challenges for data analysis especially when the species have similar morphologies. In this work, we report a deep learning-enabled high-throughput system for predicting Cryptosporidium and Giardia in drinking water. This system combines imaging flow cytometry and an efficient artificial neural network called MCellNet, which achieves a classification accuracy >99.6%. The system can detect Cryptosporidium and Giardia with a sensitivity of 97.37% and a specificity of 99.95%. The high-speed analysis reaches 346 frames per second, outperforming the state-of-the-art deep learning algorithm MobileNetV2 in speed (251 frames per second) with a comparable classification accuracy. The reported system empowers rapid, accurate, and high throughput bioparticle detection in clinical diagnostics, environmental monitoring and other potential biosensing applications.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Deep Learning , Cryptosporidiosis/diagnostic imaging , Flow Cytometry , Giardia , Humans
14.
Micromachines (Basel) ; 11(12)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297515

ABSTRACT

High accuracy measurement of size is essential in physical and biomedical sciences. Various sizing techniques have been widely used in sorting colloidal materials, analyzing bioparticles and monitoring the qualities of food and atmosphere. Most imaging-free methods such as light scattering measure the averaged size of particles and have difficulties in determining non-spherical particles. Imaging acquisition using camera is capable of observing individual nanoparticles in real time, but the accuracy is compromised by the image defocusing and instrumental calibration. In this work, a machine learning-based pipeline is developed to facilitate a high accuracy imaging-based particle sizing. The pipeline consists of an image segmentation module for cell identification and a machine learning model for accurate pixel-to-size conversion. The results manifest a significantly improved accuracy, showing great potential for a wide range of applications in environmental sensing, biomedical diagnostical, and material characterization.

15.
Anal Chem ; 91(24): 15811-15817, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31625719

ABSTRACT

Split aptamers (SPAs) are a pair of oligonucleotide fragments generated by cleaving a long parent aptamer. SPAs have many compelling advantages over the parent aptamer such as sandwich target binding, optimized concise structure, and low cost. However, only a limited number of SPAs have been developed so far because the traditional theory restricts the splitting to the functionally dispensable site that many parent aptamers do not possess. In this work, the traditional mechanism and hypothesis that SPAs can also be generated by splitting the parent aptamer at the functionally essential site while still preserving the biorecognition capability are challenged. To prove the hypothesis, three SPAs with Broken initial small-molecule binding Pockets (BPSPAs) are discovered and their binding capabilities are validated both in the wet lab and in silico. An allosteric binding mechanism of BPSPAs, in which a new binding pocket is formed upon the target binding, is revealed by all-atom microsecond-scale molecular dynamics simulations. Our work highlights the important role of MD simulations in predicting the ligand binding potency with functional nucleic acids at the molecular level. The findings will greatly promote discovery of new SPAs and their applications in molecular sensing in many fields.

16.
ACS Nano ; 13(10): 12070-12080, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31585042

ABSTRACT

Current particle sorting methods such as microfluidics, acoustics, and optics focus on exploiting the differences in the mass, size, refractive index, or fluorescence staining. However, there exist formidable challenges for them to sort label-free submicron particles with similar volume and refractive index yet distinct shapes. In this work, we report an optofluidic nanophotonic sawtooth array (ONSA) that generates sawtooth-like light fields through light coupling, paving the physical foundation for shape-selective sieving. Submicron particles interact with the coupled hotspots which impose different optical torques on the particles according to their shapes. Unstained S. aureus and E. coli are used as a model system to demonstrate this shape-selective sorting mechanism based on the torque-induced body dynamics, which was previously unattainable by other particle sorting technologies. More than 95% of S. aureus is retained within ONSA, while more than 97% of E. coli is removed. This nanophotonic chip offers a paradigm shift in shape-selective sorting of submicron particles and expands the boundary of optofluidics-based particle manipulation.


Subject(s)
Lasers , Microfluidics/methods , Nanoparticles/chemistry , Optics and Photonics/methods , Escherichia coli/cytology , Light , Staphylococcus aureus/cytology
17.
mBio ; 10(4)2019 07 09.
Article in English | MEDLINE | ID: mdl-31289190

ABSTRACT

Mannitol-1-phosphate dehydrogenase (M1PDH) is a key enzyme in Staphylococcus aureus mannitol metabolism, but its roles in pathophysiological settings have not been established. We performed comprehensive structure-function analysis of M1PDH from S. aureus USA300, a strain of community-associated methicillin-resistant S. aureus, to evaluate its roles in cell viability and virulence under pathophysiological conditions. On the basis of our results, we propose M1PDH as a potential antibacterial target. In vitro cell viability assessment of ΔmtlD knockout and complemented strains confirmed that M1PDH is essential to endure pH, high-salt, and oxidative stress and thus that M1PDH is required for preventing osmotic burst by regulating pressure potential imposed by mannitol. The mouse infection model also verified that M1PDH is essential for bacterial survival during infection. To further support the use of M1PDH as an antibacterial target, we identified dihydrocelastrol (DHCL) as a competitive inhibitor of S. aureus M1PDH (SaM1PDH) and confirmed that DHCL effectively reduces bacterial cell viability during host infection. To explain physiological functions of SaM1PDH at the atomic level, the crystal structure of SaM1PDH was determined at 1.7-Å resolution. Structure-based mutation analyses and DHCL molecular docking to the SaM1PDH active site followed by functional assay identified key residues in the active site and provided the action mechanism of DHCL. Collectively, we propose SaM1PDH as a target for antibiotic development based on its physiological roles with the goals of expanding the repertory of antibiotic targets to fight antimicrobial resistance and providing essential knowledge for developing potent inhibitors of SaM1PDH based on structure-function studies.IMPORTANCE Due to the shortage of effective antibiotics against drug-resistant Staphylococcus aureus, new targets are urgently required to develop next-generation antibiotics. We investigated mannitol-1-phosphate dehydrogenase of S. aureus USA300 (SaM1PDH), a key enzyme regulating intracellular mannitol levels, and explored the possibility of using SaM1PDH as a target for developing antibiotic. Since mannitol is necessary for maintaining the cellular redox and osmotic potential, the homeostatic imbalance caused by treatment with a SaM1PDH inhibitor or knockout of the gene encoding SaM1PDH results in bacterial cell death through oxidative and/or mannitol-dependent cytolysis. We elucidated the molecular mechanism of SaM1PDH and the structural basis of substrate and inhibitor recognition by enzymatic and structural analyses of SaM1PDH. Our results strongly support the concept that targeting of SaM1PDH represents an alternative strategy for developing a new class of antibiotics that cause bacterial cell death not by blocking key cellular machinery but by inducing cytolysis and reducing stress tolerance through inhibition of the mannitol pathway.


Subject(s)
Anti-Bacterial Agents/pharmacology , Mannitol/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Sugar Alcohol Dehydrogenases/chemistry , Sugar Alcohol Dehydrogenases/metabolism , Animals , Female , Macrophages/microbiology , Male , Methicillin-Resistant Staphylococcus aureus/enzymology , Methicillin-Resistant Staphylococcus aureus/genetics , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Mutation , RAW 264.7 Cells , Staphylococcal Infections/microbiology , Sugar Alcohol Dehydrogenases/genetics , Virulence
18.
Cell Physiol Biochem ; 53(1): 157-171, 2019.
Article in English | MEDLINE | ID: mdl-31251006

ABSTRACT

BACKGROUND/AIMS: Dysregulation of deubiquitinating enzymes (DUBs), which regulate the stability of key proteins, has been implicated in many human diseases, including cancers. Thus, DUBs can be considered as potential therapeutic targets for many diseases. Among them, USP4 has been proposed as a promising target for colon cancer drugs since USP4 controls the stability of ß-catenin, a key factor in the Wnt signaling involved in the tumorigenesis of colorectal cancer. However, developing potential DUB inhibitors has been hindered because many DUBs harbor similar active site structures and show broad substrate specificities. METHODS: By performing in vitro deubiquitinating activity assays using a chemical library, we identified several potential DUB inhibitors. Among them, only neutral red (NR) showed selective inhibitory activity on USP4 in a cell-based assay system. In colon cancer cells, NR affected the protein stability of ß-catenin, as shown by immunoblotting, and it affected the target gene expression of ß-catenin, as shown by quantitative real-time PCR. NR's potential as an anticancer drug was further estimated by colony formation and cell migration assays and by using a mouse xenograft model. RESULTS: We identified NR as an uncompetitive inhibitor of USP4 and validated its effects in colorectal cancer. NR-treated cells showed decreased ß-catenin stability and reduced expression of ß-catenin target genes. Additionally, treating colon cancer cells with NR significantly reduced colony formation and cell migration, and injecting NR into a mouse xenograft model reduced the tumor volume. CONCLUSION: The current results suggest that NR could be developed as an anticancer drug targeting USP4, and they support the possibility of developing specific DUB inhibitors as therapeutic agents.


Subject(s)
Neutral Red/pharmacology , Ubiquitin-Specific Proteases/antagonists & inhibitors , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cyclin D1/genetics , Cyclin D1/metabolism , Disease Progression , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neutral Red/chemistry , Neutral Red/therapeutic use , Transplantation, Heterologous , Ubiquitin-Specific Proteases/metabolism
19.
J Med Chem ; 61(23): 10473-10487, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30388007

ABSTRACT

As an alternative strategy to fight antibiotic resistance, two-component systems (TCSs) have emerged as novel targets. Among TCSs, master virulence regulators that control the expression of multiple virulence factors are considered as excellent antivirulence targets. In Staphylococcus aureus, virulence factor expression is tightly regulated by a few master regulators, including the SaeRS TCS. In this study, we used a SaeRS GFP-reporter system to screen natural compound inhibitors of SaeRS, and identified xanthoangelol B 1, a prenylated chalcone from Angelica keiskei as a hit. We have synthesized 1 and its derivative PM-56 and shown that 1 and PM-56 both had excellent inhibitory potency against the SaeRS TCS, as demonstrated by various in vitro and in vivo experiments. As a mode of action, 1 and PM-56 were shown to bind directly to SaeS and inhibit its histidine kinase activity, which suggests a possibility of a broad spectrum inhibitor of histidine kinases.


Subject(s)
Chalcone/analogs & derivatives , Drug Design , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism , Virulence Factors/biosynthesis , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chalcone/chemical synthesis , Chalcone/chemistry , Chalcone/pharmacology , Chemistry Techniques, Synthetic
20.
Curr Med Chem ; 25(12): 1420-1432, 2018.
Article in English | MEDLINE | ID: mdl-28403790

ABSTRACT

BACKGROUND: Nitric oxide (NO) plays important regulatory roles in a plethora of biological functions and thus holds tremendous potential to be exploited for clinical uses. However, the chemistries in the molecular design of nano-nitric oxide delivery systems is currently lacking. OBJECTIVE: The overarching aim of this review is to provide the readers with the fundamentals that relate to the design of NO release molecules (NORMs), loading and releasing mechanism, as well as delivery of NORMs for nanotherapeutics. METHODS: We conducted a thorough literature search on the design and synthesis of NORMs, as well as the current state-of-the-art NO compatible delivery platforms to address various clinical needs. RESULTS: N-diazeniumdiolate and S-nitrosothiol based NO molecules are among the most widely used NORMs for anti-cancer and anti-microbial applications. The innovative integration of these NORMs with cytocompatible organic and inorganic nanocarriers enabled controlled spatiotemporal delivery and release of NO at the targeted diseased sites. CONCLUSION: We have provided a comprehensive summary of the fundamental chemistries underpinning the molecular design of the NORMs and critically assessed the recent advancements of nano-NO delivery systems for advanced biomedical applications.


Subject(s)
Drug Carriers/pharmacology , Nanoparticles/chemistry , Nitric Oxide Donors/pharmacology , Cell Line, Tumor , Drug Carriers/chemical synthesis , Drug Carriers/chemistry , Drug Carriers/radiation effects , Drug Liberation/radiation effects , Humans , Light , Nanoparticles/radiation effects , Nitric Oxide Donors/administration & dosage , Nitric Oxide Donors/chemical synthesis , Nitric Oxide Donors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...