Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Opt Express ; 12(8): 4920-4933, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34513233

ABSTRACT

Selective retinal therapy (SRT) employs a micro-second short-pulse lasers to induce localized destruction of the targeted retinal structures with a pulse duration and power aimed at minimal damage to other healthy retinal cells. SRT has demonstrated a great promise in the treatment of retinal diseases, but pulse energy thresholds for effective SRT procedures should be determined precisely and in real time, as the thresholds could vary with disease status and patients. In this study, we present the use of a multi-port fiber-based interferometer (MFI) for highly sensitive real-time SRT monitoring. We exploit distinct phase differences among the fiber ports in the MFI to quantitatively measure localized fluctuations of complex-valued information during the SRT procedure. We evaluate several metrics that can be computed from the full complex-valued information and demonstrate that the complex contour integration is highly sensitive and most correlative to pulse energies, acoustic outputs, and cell deaths. The validity of our method was demonstrated on excised porcine retinas, with a sensitivity and specificity of 0.92 and 0.88, respectively, as compared with the results from a cell viability assay.

2.
Sci Rep ; 10(1): 8606, 2020 05 25.
Article in English | MEDLINE | ID: mdl-32451400

ABSTRACT

We describe the development and clinical evaluation of an automated smartphone-linked sensor capable of chemical-free, quantitative measurement of hemoglobin concentration ([Hb]) in whole blood samples. We have demonstrated that our sensor could analyze an unprocessed blood specimen with a mean processing time of <8 s and provided the [Hb] results with ~99% accuracy against a reference hematology analyzer with coefficient of variation (CV) of 1.21% measured at [Hb] = 11.2 g/dL. Its diagnostic capability for anemia was evaluated by measuring [Hb] of 142 clinical blood specimens and comparing the results with those from an automated hematology analyzer (ADVIA 2120i, Siemens AG, Germany) and a portable hemoglobinomteter (Hb201+, Hemocue, Sweden). The sensor yielded comparable sensitivities and specificities of 87.50% and 100.00% for males, and 94.44% and 100.00% for females, respectively, for anemic detection. The results suggested that our optical sensor based on the intrinsic photothermal response of Hb molecules and advances in consumer electronics, particularly smartphone capabilities, enables a direct, chemical-free [Hb] assay accessible to people in both developed and developing countries.


Subject(s)
Hematologic Tests/methods , Hemoglobins/analysis , Anemia/diagnosis , Female , Hematologic Tests/instrumentation , Humans , Limit of Detection , Male , Mobile Applications , Reproducibility of Results , Smartphone
3.
J Vis Exp ; (118)2016 12 07.
Article in English | MEDLINE | ID: mdl-28060269

ABSTRACT

Photo-thermal angular light scattering (PT-AS) is a novel optical method for measuring the hemoglobin concentration ([Hb]) of blood samples. On the basis of the intrinsic photothermal response of hemoglobin molecules, the sensor enables high-sensitivity, chemical-free measurement of [Hb]. [Hb] detection capability with a limit of 0.12 g/dl over the range of 0.35 - 17.9 g/dl has been demonstrated previously. The method can be readily implemented using inexpensive consumer electronic devices such as a laser pointer and a webcam. The use of a micro-capillary tube as a blood container also enables the hemoglobin assay with a nanoliter-scale blood volume and a low operating cost. Here, detailed instructions for the PT-AS optical setup and signal processing procedures are presented. Experimental protocols and representative results for blood samples in anemic conditions ([Hb] = 5.3, 7.5, and 9.9 g/dl) are also provided, and the measurements are compared with those from a hematology analyzer. Its simplicity in implementation and operation should enable its wide adoption in clinical laboratories and resource-limited settings.


Subject(s)
Biological Assay , Hemoglobins/analysis , Light , Blood Specimen Collection , Humans
4.
Biomed Opt Express ; 6(12): 4912-22, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26713205

ABSTRACT

We present a multi-contrast microscope based on color-coded illumination and computation. A programmable three-color light-emitting diode (LED) array illuminates a specimen, in which each color corresponds to a different illumination angle. A single color image sensor records light transmitted through the specimen, and images at each color channel are then separated and utilized to obtain bright-field, dark-field, and differential phase contrast (DPC) images simultaneously. Quantitative phase imaging is also achieved based on DPC images acquired with two different LED illumination patterns. The multi-contrast and quantitative phase imaging capabilities of our method are demonstrated by presenting images of various transparent biological samples.

5.
Biosens Bioelectron ; 74: 469-75, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26176206

ABSTRACT

We present a direct, rapid and chemical-free detection method for hemoglobin concentration ([Hb]), based on photothermal angular light scattering. The iron oxides contained in hemoglobin molecules exhibit high absorption of 532-nm light and generate heat under the illumination of 532-nm light, which subsequently alters the refractive index of blood. We measured this photothermal change in refractive index by employing angular light scattering spectroscopy with the goal of quantifying [Hb] in blood samples. Highly sensitive [Hb] measurement of blood samples was performed by monitoring the shifts in angularly dispersed scattering patterns from the blood-loaded microcapillary tubes. Our system measured [Hb] over the range of 0.35-17.9 g/dL with a detection limit of ~0.12 g/dL. Our sensor was characterized by excellent correlation with a reference hematology analyzer (r>0.96), and yielded a precision of 0.63 g/dL for a blood sample of 9.0 g/dL.


Subject(s)
Biosensing Techniques/instrumentation , Erythrocytes/metabolism , Hemoglobins/metabolism , Lighting/instrumentation , Refractometry/instrumentation , Adult , Equipment Design , Equipment Failure Analysis , Hot Temperature , Humans , Light , Male , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...