Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38541560

ABSTRACT

Herein, we conducted a comprehensive statistical assessment of the ultrasonic pulse velocity (UPV) method's effectiveness in predicting concrete strength under diverse conditions, specifically early age, middle age, and high-temperature exposure. The concrete mixtures, with water-to-cement (W/C) ratios of 0.33 and 0.28, were classified as granite aggregate or coal-ash aggregate mixes. Compressive strength and UPV measurements were performed under these conditions, and subsequent statistical analyses treated the identified factors as distinct groups. The results revealed a substantial difference in compressive strength between specimens at early age (average of 13.01) and those at middle age (average of 41.96) and after high-temperature exposure (average of 48.08). Conversely, UPV analysis showed an insignificant difference between the early-age specimens and those after high-temperature exposure. The analysis of the W/C ratio and coarse aggregate demonstrated significant differences (p-value < 0.05) in compressive strength between specimens in middle age and those exposed to high temperatures, excluding the early-age specimens. However, UPV analysis revealed insignificant differences, with p-values of 0.67 and 0.38 between specimens at an early age and post-high-temperature exposure, respectively. Regression analysis identified suitable functions for each scenario, emphasizing the importance of a strength prediction model for concrete after high-temperature exposure, particularly considering the W/C ratio. Since concrete showed statistically different compressive strength, UPV, and strength prediction models in three conditions (early age, middle age, and high temperature), different strength prediction models must be used for the purpose of accurately predicting the strength of concrete.

2.
Materials (Basel) ; 16(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37959447

ABSTRACT

Currently, in order to reduce the greenhouse gases of global warming, research on alternative cement materials is being actively conducted in the construction industry to reduce cement use, and it is judged to be important to evaluate the timing of form removal for the initial age. Therefore, in this study, we evaluated the initial mechanical properties of concrete in which cement was partially replaced with non-sintered hwangto (NHT). Specimens without NHT (namely, normal mortar (NM) and normal concrete (NC)) and specimens with NHT (namely, non-sintered hwangto mortar (HTM) and non-sintered hwangto concrete (HTC)) were prepared. NHT was substituted for 15% and 30% of cement. Two water-to-binder (W/B) ratios, 41% and 33%, were used to analyze the variation in the mechanical properties according to the cement and NHT content per unit volume of concrete. The compressive strength and ultrasonic pulse velocity (UPV) were measured. Experimental results indicated that compressive strength decreased with an increase in NHT content. The mortar with NHT substitution rates of 15% and 30% exhibited higher UPV than NM at a W/B ratio of 41%, in contrast to the behavior observed for concrete. The UPVs of most specimens were similar regardless of the NHT substitution rate. The correlation between the compressive strength and UPV of HTC was analyzed, and therefrom, exponential equations with a high correlation coefficient (R2) were proposed for strength prediction; the resulting predictions were compared with the results of previous compressive strength prediction models.

3.
Materials (Basel) ; 16(20)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37895781

ABSTRACT

The ultrasonic pulse velocity (UPV) technique, which is an efficient technique for concrete quality evaluation, can be affected by several factors. Many studies have proposed compressive-strength prediction models based on UPV in concrete; however, few studies have investigated the factors resulting in statistically different UPV results for different models. This study examined the difference between compressive strengths of various concrete specimens calculated by age-dependent and temperature-dependent UPV-based prediction models. Furthermore, a statistical analysis was conducted to evaluate the influence of aggregates and water/cement ratio (design compressive strength), which are said to affect UPV, on the compressive-strength prediction models. The experimental results revealed that the residual compressive strength of concrete after high-temperature exposure was about 9.5 to 24.8% higher than the age-dependent compressive strength. By contrast, after high-temperature exposure, UPV tended to be about 34.5% lower. The compressive strengths and UPVs were significantly different with respect to high temperature, aggregate density, and design compressive strength. The compressive-strength prediction model derived from the regression analysis showed a high R2 (average 0.91) and mean error converged to zero compared to the compressive-strength prediction model without considering these factors. Finally, the differences between the age- and temperature-based compressive-strength prediction models were analyzed according to the corresponding microstructures.

4.
Materials (Basel) ; 16(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36770109

ABSTRACT

Research on alternative cement materials is active worldwide, and in terms of fire safety, research on the evaluation of high-temperature properties of alternative materials is very important. Studies on concrete mixed with hwangto have been conducted by several researchers, but studies on high-temperature properties are lacking. Therefore, in this study, we evaluated the mechanical properties of concrete by partially replacing cement with non-sintered hwangto (NSH) at high temperatures. Normal concrete without NSH mixing and non-sintered hwangto concrete (NSHC) with HNT replacement were prepared as the specimens. The W/B of the concrete was set to 41 and 33, whereas the NSH replacement ratio was 15 and 30% of the cement. The target heating temperatures were set to 20, 100, 200, 300, 500, and 700 °C, and the heating rate was maintained at 1 °C/min. The following were calculated to evaluate the mechanical properties of the specimens: mass loss, compressive strength, ultrasonic pulse velocity (UPV), and modulus of elasticity. After analyzing the correlation between residual compressive strength and UPV, we proposed a compressive strength prediction model using different values of W/B for NSHC. Experimental results suggest that mass loss (%) shows a decreasing trend as NSH increases. In terms of residual compressive strength, residual compressive strength at W/B 41 increased with NSH replacement, whereas residual compressive strength values for W/B 33 were observed regardless of NSH replacement. Residual UPV showed a similar trend, regardless of the NSH replacement ratio, and residual modulus of elasticity was low at all W/B ratios as NSH replacement increased. A linear equation with a high correlation coefficient (R2) was proposed to predict compressive strength, and the linear value of W/B 41 was slightly higher than that of W/B 33.

5.
Materials (Basel) ; 16(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36676252

ABSTRACT

This study measured and analyzed the mechanical properties of normal aggregate concrete (NC) and lightweight aggregate concrete (LC) subjected to high temperatures. The target temperature was set to 100, 200, 300, 500, and 700 °C, and W/C was set to 0.41, 0.33 and 0.28 to evaluate high temperature properties at various intensities. Measurement parameters included mass loss, compressive strength, ultrasonic pulse velocity (UPV), and elastic modulus. We compared the residual mechanical properties between the target and preheating temperatures (20 °C) and then analyzed the correlation between UPV and compressive strength. According to the research findings, after exposure to high temperatures, LC demonstrated a higher mass reduction rate than NC at all levels and exhibited higher residual mechanical properties. The results of analyzing the correlation between compressive strength and UPV for concrete subjected high temperatures were very different from the compressive strength prediction equation previous proposed at room temperature, and the error range of the residual strength prediction equation considering W/C was reduced.

6.
Materials (Basel) ; 17(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38204026

ABSTRACT

This paper presents and investigates the properties of concrete in which a portion of the cement is substituted with non-sintered Hwangto (NSH), a readily available building material in Asia. Given the inactive nature of NSH, this study aimed to determine the optimal cement replacement ratio and quantitative strength of the material. The unit weight, compressive strength, ultrasonic pulse velocity (UPV), and stress-strain of the NSH concrete (NSHC) were evaluated. Additionally, we developed a predictive model for determining compressive strength based on the regression analysis of compressive strength and UPV. The water-to-binder ratio was set to 0.41, 0.33, and 0.28, and the NSH replacement rates in the cement were set to 0%, 15%, 30%, and 45% for evaluating various strength ranges. The mechanical property measurements indicated reductions of 5.35% in unit weight, 35.62% in compressive strength, and 6.34% in UPV as the NSH was replaced. Notably, the smallest deviation from plain concrete was observed at a replacement rate of 15%. The scanning electron microscopy analysis results showed that the plain concrete exhibited a crystalloid structure; however, as the NSH replacement rate increased, the amorphous structure and pores increased while unreacted NSH particles were also observed. The X-ray diffraction analysis results demonstrate that the peak intensities for kaolinite and mullite increased as the NSH replacement rate increased, while those of C-S-H gel and CaO showed low peak intensities. Furthermore, the regression analysis concluded that an exponential function was suitable. Consequently, a compressive strength prediction model was developed, and in the error test, the NSHC model demonstrated an average error of <10%, with fewer errors at the lower compressive strength boundaries.

7.
Materials (Basel) ; 15(8)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35454644

ABSTRACT

This study classified the strength of normal aggregate concrete (NC) and lightweight aggregate concrete (LC) into three levels (30, 45, and 60 MPa). In particular, the compressive strength, ultrasonic pulse velocity, and elastic modulus were measured and analyzed at the ages of 1, 3, 7, and 28 days to establish the correlation between the compressive strength and the ultrasonic pulse velocity and between the elastic modulus and the ultrasonic pulse velocity. In addition, this study proposed strength and elastic modulus prediction equations as functions of the ultrasonic pulse velocity. The developed equations were compared with previously proposed strength prediction equations. The results showed that the measured mechanical properties of NC tended to be higher at all ages than in LC. However, LC45 exhibited relatively high compressive strength compared to NC45. The relative mechanical properties of LC compared to NC were the highest at 45 MPa and the lowest at 60 MPa. The relative ultrasonic pulse velocity converged at all levels as the age increased. Moreover, the correlation between the compressive strength and the ultrasonic pulse velocity in LC exceeded that of NC, and in LC, the correlation coefficient decreased as the strength increased. The correlation coefficients between the elastic modulus and the ultrasonic pulse velocity were high at all levels except for LC45. Finally, this study proposed compressive strength and elastic modulus prediction equations as an exponential function of LC. The proposed equations outperformed the previously proposed strength prediction equations.

SELECTION OF CITATIONS
SEARCH DETAIL
...