Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 6(24): 20145-59, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26023737

ABSTRACT

Glioblastoma (GBM) is the most lethal brain cancer with profound genomic alterations. While the bona fide tumor suppressor genes such as PTEN, NF1, and TP53 have high frequency of inactivating mutations, there may be the genes with GBM-suppressive roles for which genomic mutation is not a primary cause for inactivation. To identify such genes, we employed in vivo RNAi screening approach using the patient-derived GBM xenograft models. We found that Nemo-Like Kinase (NLK) negatively regulates mesenchymal activities, a characteristic of aggressive GBM, in part via inhibition of WNT/ß-catenin signaling. Consistent with this, we found that NLK expression is especially low in a subset of GBMs that harbors high WNT/mesenchymal activities. Restoration of NLK inhibited WNT and mesenchymal activities, decreased clonogenic growth and survival, and impeded tumor growth in vivo. These data unravel a tumor suppressive role of NLK and support the feasibility of combining oncogenomics with in vivo RNAi screen.


Subject(s)
Brain Neoplasms/genetics , Glioblastoma/genetics , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Animals , Brain Neoplasms/enzymology , Brain Neoplasms/pathology , Cell Proliferation/genetics , Female , Glioblastoma/enzymology , Glioblastoma/pathology , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL
...