Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 31991, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27553518

ABSTRACT

We have demonstrated that photo-thin film transistors (photo-TFTs) fabricated via a simple defect-generating process could achieve fast recovery, a high signal to noise (S/N) ratio, and high sensitivity. The photo-TFTs are inverted-staggered bottom-gate type indium-gallium-zinc-oxide (IGZO) TFTs fabricated using atomic layer deposition (ALD)-derived Al2O3 gate insulators. The surfaces of the Al2O3 gate insulators are damaged by ion bombardment during the deposition of the IGZO channel layers by sputtering and the damage results in the hysteresis behavior of the photo-TFTs. The hysteresis loops broaden as the deposition power density increases. This implies that we can easily control the amount of the interface trap sites and/or trap sites in the gate insulator near the interface. The photo-TFTs with large hysteresis-related defects have high S/N ratio and fast recovery in spite of the low operation voltages including a drain voltage of 1 V, positive gate bias pulse voltage of 3 V, and gate voltage pulse width of 3 V (0 to 3 V). In addition, through the hysteresis-related defect-generating process, we have achieved a high responsivity since the bulk defects that can be photo-excited and eject electrons also increase with increasing deposition power density.

2.
ACS Appl Mater Interfaces ; 8(24): 15518-23, 2016 Jun 22.
Article in English | MEDLINE | ID: mdl-27259048

ABSTRACT

Highly repeatable and recoverable phototransistors were explored using a "multifunctional channels" structure with multistacked chalcogenide and oxide semiconductors. These devices were made of (i) photoactive CdS (with a visible band gap), (ii) fast charge transporting ZnO (with a high field-effect mobility), and (iii) a protection layer of Al2O3 (with high chemical durability). The CdS TFT without the Al2O3 protection layer did not show a transfer curve due to the chemical damage that occurred on the ZnO layer during the chemical bath deposition (CBD) process used for CdS deposition. Alternatively, compared to CdS phototransistors with long recovery time and high hysteresis (ΔVth = 19.5 V), our "multi-functional channels" phototransistors showed an extremely low hysteresis loop (ΔVth = 0.5V) and superior photosensitivity with repeatable high photoresponsivity (52.9 A/W at 400 nm). These improvements are likely caused by the physical isolation of the sensing region and charge transport region by the insertion of the ultrathin Al2O3 layer. This approach successfully addresses some of the existing problems in CdS phototransistors, such as the high gate-interface trap site density and high absorption of molecular oxygen, which originate from the polycrystalline CdS.

3.
Sci Rep ; 6: 26287, 2016 05 20.
Article in English | MEDLINE | ID: mdl-27198067

ABSTRACT

In this paper, a simple and controllable "wet pulse annealing" technique for the fabrication of flexible amorphous InGaZnO thin film transistors (a-IGZO TFTs) processed at low temperature (150 °C) by using scalable vacuum deposition is proposed. This method entailed the quick injection of water vapor for 0.1 s and purge treatment in dry ambient in one cycle; the supply content of water vapor was simply controlled by the number of pulse repetitions. The electrical transport characteristics revealed a remarkable performance of the a-IGZO TFTs prepared at the maximum process temperature of 150 °C (field-effect mobility of 13.3 cm(2) V(-1) s(-1); Ion/Ioff ratio ≈ 10(8); reduced I-V hysteresis), comparable to that of a-IGZO TFTs annealed at 350 °C in dry ambient. Upon analysis of the angle-resolved x-ray photoelectron spectroscopy, the good performance was attributed to the effective suppression of the formation of hydroxide and oxygen-related defects. Finally, by using the wet pulse annealing process, we fabricated, on a plastic substrate, an ultrathin flexible a-IGZO TFT with good electrical and bending performances.

4.
ACS Appl Mater Interfaces ; 7(11): 6118-24, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25714371

ABSTRACT

The effect of multivalent metal cations, including vanadium(V) and tin (Sn), on the electrical properties of vanadium-doped zinc tin oxide (VZTO) was investigated in the context of the fabrication of thin-film transistors (TFTs) using a single VZTO film and VZTO/ZTO bilayer as channel layers. The single VZTO TFT did not show any response to the gate voltage (insulator-like behavior). On the other hand, the VZTO/ZTO bilayer TFT exhibited a typical TFT transfer characteristic (semiconducting behavior). X-ray photoelectron spectroscopy revealed that, in contrast to what is commonly true in many oxides, oxygen vacancies (V(O)) in VZTO did not provide a dominant contribution to the total carrier concentration, because the V(O) peak area in the single VZTO film was 5.4% and reduced to 4.5% in VZTO/ZTO bilayer. Instead, Sn 3d5/2 and V 2p3/2 spectra suggest that the significant reduction in Sn and V ions is strongly related to the insulator-like behavior of the VZTO film. In negative-bias illumination tests and illumination tests with various photon energies, the VZTO/ZTO bilayer TFT had much better stability than the ZTO TFT. This result is attributed to the reduction of donor-like states ([Formula: see text]O) that can be positively ionized by blue and green illumination.

SELECTION OF CITATIONS
SEARCH DETAIL
...