Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 111(24): 6845-56, 2007 Jun 21.
Article in English | MEDLINE | ID: mdl-17567097

ABSTRACT

Dicarboxylic acid ligands (malonate, succinate, and butylmalonate) stabilize 2 nm diameter IrO2 particles synthesized by hydrolysis of aqueous IrCl(6)2- solutions. Analogous monodentate (acetate) and tridentate (citrate) carboxylate ligands, as well as phosphonate and diphosphonate ligands, are less effective as stabilizers and lead to different degrees of nanoparticle aggregation, as evidenced by transmission electron microscopy. Succinate-stabilized 2 nm IrO2 particles are good catalysts for water photo-oxidation in persulfate/sensitizer solutions. Ruthenium tris(2,2'-bipyridyl) sensitizers containing malonate and succinate groups in the 4,4'-positions are also good stabilizers of 2 nm diameter IrO2 colloids. The excited-state emission of these bound succinate-terminated sensitizer molecules is efficiently quenched on a time scale of approximately 30 ns, most likely by electron transfer to Ir(IV). In 1 M persulfate solutions in pH 5.8 Na2SiF6/NaHCO3 buffer solutions, the excited-state of the bound sensitizer is quenched oxidatively on the time scale of approximately 9 ns. Electron transfer from Ir(IV) to Ru(III) occurs with a first-order rate constant of 8x10(2) s(-1), and oxygen is evolved. The turnover number for oxygen evolution under these conditions was approximately 150. The sensitizer-IrO2 diad is thus a functional catalyst for photo-oxidation of water, and may be a useful building block for overall visible light water splitting systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...