Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38748250

ABSTRACT

Dynamic presynaptic actin remodeling drives structural and functional plasticity at synapses, but the underlying mechanisms remain largely unknown. Previous work has shown that actin regulation via Rac1 guanine exchange factor (GEF) Vav signaling restrains synaptic growth via bone morphogenetic protein (BMP)-induced receptor macropinocytosis and mediates synaptic potentiation via mobilization of reserve pool vesicles in presynaptic boutons. Here, we find that Gef26/PDZ-GEF and small GTPase Rap1 signaling couples the BMP-induced activation of Abelson kinase to this Vav-mediated macropinocytosis. Moreover, we find that adenylate cyclase Rutabaga (Rut) signaling via exchange protein activated by cAMP (Epac) drives the mobilization of reserve pool vesicles during post-tetanic potentiation (PTP). We discover that Rap1 couples activation of Rut-cAMP-Epac signaling to Vav-mediated synaptic potentiation. These findings indicate that Rap1 acts as an essential, convergent node for Abelson kinase and cAMP signaling to mediate BMP-induced structural plasticity and activity-induced functional plasticity via Vav-dependent regulation of the presynaptic actin cytoskeleton.


Subject(s)
Neuronal Plasticity , Presynaptic Terminals , Signal Transduction , Animals , Actin Cytoskeleton/metabolism , Bone Morphogenetic Proteins/metabolism , Cyclic AMP/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Presynaptic Terminals/metabolism , Proto-Oncogene Proteins c-vav/metabolism , Proto-Oncogene Proteins c-vav/genetics , rap1 GTP-Binding Proteins/metabolism , rap1 GTP-Binding Proteins/genetics , Shelterin Complex/metabolism , Pinocytosis , Drosophila
2.
J Cell Biol ; 221(10)2022 10 03.
Article in English | MEDLINE | ID: mdl-35976098

ABSTRACT

Modulation of presynaptic actin dynamics is fundamental to synaptic growth and functional plasticity; yet the underlying molecular and cellular mechanisms remain largely unknown. At Drosophila NMJs, the presynaptic Rac1-SCAR pathway mediates BMP-induced receptor macropinocytosis to inhibit BMP growth signaling. Here, we show that the Rho-type GEF Vav acts upstream of Rac1 to inhibit synaptic growth through macropinocytosis. We also present evidence that Vav-Rac1-SCAR signaling has additional roles in tetanus-induced synaptic plasticity. Presynaptic inactivation of Vav signaling pathway components, but not regulators of macropinocytosis, impairs post-tetanic potentiation (PTP) and enhances synaptic depression depending on external Ca2+ concentration. Interfering with the Vav-Rac1-SCAR pathway also impairs mobilization of reserve pool (RP) vesicles required for tetanus-induced synaptic plasticity. Finally, treatment with an F-actin-stabilizing drug completely restores RP mobilization and plasticity defects in Vav mutants. We propose that actin-regulatory Vav-Rac1-SCAR signaling independently regulates structural and functional presynaptic plasticity by driving macropinocytosis and RP mobilization, respectively.


Subject(s)
Actins , Drosophila Proteins , Guanine Nucleotide Exchange Factors , Neuronal Plasticity , Synapses , Actins/physiology , Animals , Bone Morphogenetic Protein Receptors/physiology , Calcium , Drosophila/physiology , Drosophila Proteins/metabolism , Drosophila Proteins/physiology , Guanine Nucleotide Exchange Factors/metabolism , Microfilament Proteins/physiology , Neuromuscular Junction/physiology , Signal Transduction , Synapses/physiology , Tetanus/metabolism , rac GTP-Binding Proteins/physiology
3.
J Cell Biol ; 220(5)2021 05 03.
Article in English | MEDLINE | ID: mdl-33683284

ABSTRACT

Mutations in the human ALS2 gene cause recessive juvenile-onset amyotrophic lateral sclerosis and related motor neuron diseases. Although the ALS2 protein has been identified as a guanine-nucleotide exchange factor for the small GTPase Rab5, its physiological roles remain largely unknown. Here, we demonstrate that the Drosophila homologue of ALS2 (dALS2) promotes postsynaptic development by activating the Frizzled nuclear import (FNI) pathway. dALS2 loss causes structural defects in the postsynaptic subsynaptic reticulum (SSR), recapitulating the phenotypes observed in FNI pathway mutants. Consistently, these developmental phenotypes are rescued by postsynaptic expression of the signaling-competent C-terminal fragment of Drosophila Frizzled-2 (dFz2). We further demonstrate that dALS2 directs early to late endosome trafficking and that the dFz2 C terminus is cleaved in late endosomes. Finally, dALS2 loss causes age-dependent progressive defects resembling ALS, including locomotor impairment and brain neurodegeneration, independently of the FNI pathway. These findings establish novel regulatory roles for dALS2 in endosomal trafficking, synaptic development, and neuronal survival.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Endosomes/metabolism , Endosomes/physiology , Neurons/metabolism , Neurons/physiology , Post-Synaptic Density/metabolism , Post-Synaptic Density/physiology , Amyotrophic Lateral Sclerosis/genetics , Animals , Biological Transport/physiology , Cell Death/genetics , Cell Survival/genetics , Cells, Cultured , Drosophila/genetics , Drosophila/metabolism , Drosophila/physiology , Endosomes/genetics , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Mutation/genetics , Phenotype , Post-Synaptic Density/genetics , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...