Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 163(2): 456-92, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26451489

ABSTRACT

We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.29 ± 0.01 mm(3) containing ~31,000 neurons, and patch-clamp studies identify 55 layer-specific morphological and 207 morpho-electrical neuron subtypes. When digitally reconstructed neurons are positioned in the volume and synapse formation is restricted to biological bouton densities and numbers of synapses per connection, their overlapping arbors form ~8 million connections with ~37 million synapses. Simulations reproduce an array of in vitro and in vivo experiments without parameter tuning. Additionally, we find a spectrum of network states with a sharp transition from synchronous to asynchronous activity, modulated by physiological mechanisms. The spectrum of network states, dynamically reconfigured around this transition, supports diverse information processing strategies. PAPERCLIP: VIDEO ABSTRACT.


Subject(s)
Computer Simulation , Models, Neurological , Neocortex/cytology , Neurons/classification , Neurons/cytology , Somatosensory Cortex/cytology , Algorithms , Animals , Hindlimb/innervation , Male , Neocortex/physiology , Nerve Net , Neurons/physiology , Rats , Rats, Wistar , Somatosensory Cortex/physiology
2.
PLoS Comput Biol ; 8(4): e1002474, 2012.
Article in English | MEDLINE | ID: mdl-22557937

ABSTRACT

The complex three-dimensional shapes of tree-like structures in biology are constrained by optimization principles, but the actual costs being minimized can be difficult to discern. We show that despite quite variable morphologies and functions, bifurcations in the scleractinian coral Madracis and in many different mammalian neuron types tend to be planar. We prove that in fact bifurcations embedded in a spatial tree that minimizes wiring cost should lie on planes. This biologically motivated generalization of the classical mathematical theory of Euclidean Steiner trees is compatible with many different assumptions about the type of cost function. Since the geometric proof does not require any correlation between consecutive planes, we predict that, in an environment without directional biases, consecutive planes would be oriented independently of each other. We confirm this is true for many branching corals and neuron types. We conclude that planar bifurcations are characteristic of wiring cost optimization in any type of biological spatial tree structure.


Subject(s)
Anthozoa/anatomy & histology , Anthozoa/physiology , Models, Anatomic , Models, Biological , Morphogenesis/physiology , Animals , Computer Simulation
3.
Article in English | MEDLINE | ID: mdl-18946531

ABSTRACT

The unsupervised categorization of sensory stimuli is typically attributed to feedforward processing in a hierarchy of cortical areas. This purely sensory-driven view of cortical processing, however, ignores any internal modulation, e.g., by top-down attentional signals or neuromodulator release. To isolate the role of internal signaling on category formation, we consider an unbroken continuum of stimuli without intrinsic category boundaries. We show that a competitive network, shaped by recurrent inhibition and endowed with Hebbian and homeostatic synaptic plasticity, can enforce stimulus categorization. The degree of competition is internally controlled by the neuronal gain and the strength of inhibition. Strong competition leads to the formation of many attracting network states, each being evoked by a distinct subset of stimuli and representing a category. Weak competition allows more neurons to be co-active, resulting in fewer but larger categories. We conclude that the granularity of cortical category formation, i.e., the number and size of emerging categories, is not simply determined by the richness of the stimulus environment, but rather by some global internal signal modulating the network dynamics. The model also explains the salient non-additivity of visual object representation observed in the monkey inferotemporal (IT) cortex. Furthermore, it offers an explanation of a previously observed, demand-dependent modulation of IT activity on a stimulus categorization task and of categorization-related cognitive deficits in schizophrenic patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...