Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 266, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212341

ABSTRACT

Distributed quantum metrology has drawn intense interest as it outperforms the optimal classical counterparts in estimating multiple distributed parameters. However, most schemes so far have required entangled resources consisting of photon numbers equal to or more than the parameter numbers, which is a fairly demanding requirement as the number of nodes increases. Here, we present a distributed quantum sensing scenario in which quantum-enhanced sensitivity can be achieved with fewer photons than the number of parameters. As an experimental demonstration, using a two-photon entangled state, we estimate four phases distributed 3 km away from the central node, resulting in a 2.2 dB sensitivity enhancement from the standard quantum limit. Our results show that the Heisenberg scaling can be achieved even when using fewer photons than the number of parameters. We believe our scheme will open a pathway to perform large-scale distributed quantum sensing with currently available entangled sources.

2.
Opt Express ; 30(17): 30525-30535, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36242154

ABSTRACT

Quantum correlations between identical particles are at the heart of quantum technologies. Several studies with two identical particles have shown that the spatial overlap and indistinguishability between the particles are necessary for generating bipartite entanglement. On the other hand, researches on the extension to more than two-particle systems are limited by the practical difficulty to control multiple identical particles in laboratories. In this work, we propose schemes to generate two fundamental classes of genuine tripartite entanglement, i.e., GHZ and W classes, which are experimentally demonstrated using linear optics with three identical photons. We also show that the tripartite entanglement class decays from the genuine entanglement to the full separability as the particles become more distinguishable from each other. Our results support the prediction that particle indistinguishability is a fundamental element for entangling identical particles.

3.
Nature ; 605(7911): 624-625, 2022 05.
Article in English | MEDLINE | ID: mdl-35614238
4.
Nano Lett ; 22(4): 1672-1679, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35133163

ABSTRACT

Engineering a strongly interacting uniform qubit cluster would be a major step toward realizing a scalable quantum system for quantum sensing and a node-based qubit register. For a solid-state system that uses a defect as a qubit, various methods to precisely position defects have been developed, yet the large-scale fabrication of qubits within the strong coupling regime at room temperature continues to be a challenge. In this work, we generate nitrogen vacancy (NV) color centers in diamond with sub-10 nm scale precision using a combination of nanoscale aperture arrays (NAAs) with a high aspect ratio of 10 and a secondary E-beam hole pattern used as an ion-blocking mask. We perform optical and spin measurements on a cluster of NV spins and statistically investigate the effect of the NAAs during an ion-implantation process. We discuss how this technique is effective for constructing a scalable system.

5.
Phys Rev Lett ; 128(5): 050401, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35179912

ABSTRACT

While an information-disturbance trade-off in quantum measurement has been at the core of foundational quantum physics and constitutes a basis of secure quantum information processing, recently verified reversibility of a quantum measurement requires to refine it toward a complete version of information trade-off in quantum measurement. Here we experimentally demonstrate a trade-off relation among all information contents, i.e., information gain, disturbance, and reversibility in quantum measurement. By exploring quantum measurements applied on a photonic qutrit, we observe that the information of a quantum state is split into three distinct parts accounting for the extracted, disturbed, and reversible information. We verify that such different parts of information are in trade-off relations not only pairwise but also triplewise all at once, and find that the triplewise relation is tighter than any of the pairwise relations. Finally, we realize optimal quantum measurements that inherently preserve quantum information without loss of information, which offer wider applications in measurement-based quantum information processing.

6.
Small Methods ; 5(5): e2001264, 2021 May.
Article in English | MEDLINE | ID: mdl-34928087

ABSTRACT

The bevel structure of organic multilayers produced by finely controlled Ar gas cluster ion beam sputtering preserves both the molecular distribution and chemical states. Nevertheless, there is still an important question of whether this method can be applicable to organic multilayer structures composed of complex or ambiguous interfaces used in real organic optoelectronic devices. Herein, various bevel structures are fabricated from different types of organic semiconductors using a solution-based deposition technique: complicatedly intermixed electron-donor and electron-acceptor bulk heterojunction structure, thin film structure with an internal donor-acceptor concentration gradient, and multi-layered structure with more than three layers. For these organic material combinations listed above, the bevel structure is fabricated with finely tuned Ar gas cluster ion beam sputtering. The location-dependent X-ray photoelectron spectroscopy (XPS) results obtained for each bevel structure exactly correspond to the XPS depth profiles. This result demonstrates that the bevel structure analysis is a powerful method to distinguish subtle differences in chemical component distributions and chemical states of organic semiconductors even with complex or ambiguous interfaces. Ultimately, due to its reliability as verified by this study, the proposed bevel structure analysis is expected to greatly expand other analytical techniques with a limited spatial or depth resolution.

8.
Opt Express ; 29(18): 29527-29540, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34615061

ABSTRACT

Linear optical multiports are widely used in photonic quantum information processing. Naturally, these devices are directionally-biased since photons always propagate from the input ports toward the output ports. Recently, the concept of directionally-unbiased linear optical multiports was proposed. These directionally-unbiased multiports allow photons to propagate along a reverse direction, which can greatly reduce the number of required linear optical elements for complicated linear optical quantum networks. Here, we report an experimental demonstration of a 3 × 3 directionally-unbiased linear optical fiber multiport using an optical tritter and mirrors. Compared to the previous demonstration using bulk optical elements which works only with light sources with a long coherence length, our experimental directionally-unbiased 3 × 3 optical multiport does not require a long coherence length since it provides negligible optical path length differences among all possible optical trajectories. It can be a useful building block for implementing large-scale quantum walks on complex graph networks.

9.
Nat Commun ; 12(1): 5211, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34471118

ABSTRACT

Quantum metrology can achieve enhanced sensitivity for estimating unknown parameters beyond the standard quantum limit. Recently, multiple-phase estimation exploiting quantum resources has attracted intensive interest for its applications in quantum imaging and sensor networks. For multiple-phase estimation, the amount of enhanced sensitivity is dependent on quantum probe states, and multi-mode N00N states are known to be a key resource for this. However, its experimental demonstration has been missing so far since generating such states is highly challenging. Here, we report generation of multi-mode N00N states and experimental demonstration of quantum enhanced multiple-phase estimation using the multi-mode N00N states. In particular, we show that the quantum Cramer-Rao bound can be saturated using our two-photon four-mode N00N state and measurement scheme using a 4 × 4 multi-mode beam splitter. Our multiple-phase estimation strategy provides a faithful platform to investigate multiple parameter estimation scenarios.

10.
Front Immunol ; 12: 650841, 2021.
Article in English | MEDLINE | ID: mdl-33777049

ABSTRACT

Dendritic cells (DCs) have the ability to stimulate naïve T cells that coordinate subsequent adaptive response toward an inflammatory response or tolerance depending on the DC differentiation level. Inotodiol, a lanostane triterpenoid found in Inonotus obliquus (wild Chaga mushroom), is a natural compound with a wide range of biological activities. In this study, we investigated whether inotodiol promotes the maturation of bone marrow-derived DCs (BMDCs) and inotodiol-treated BMDCs induce T cell activation. Inotodiol increased the expression of surface maturation markers, including MHC-I, MHC-II, CD86, and CD40, on BMDCs without affecting the production of various cytokines, including TNF-α and IL-12p40 in these cells. T cells primed with inotodiol-treated BMDCs proliferated and produced IL-2, without producing other cytokines, including IL-12p40 and IFN-γ. Injection of inotodiol into mice induced maturation of splenic DCs and IL-2 production, and the administration of inotodiol and inotodiol-treated BMDCs induced the proliferation of adoptively transferred CD8+ T cells in vivo. The phosphatidylinositol-3-kinase inhibitor wortmannin abrogated the upregulation of Akt phosphorylation and CD86 and MHC-II expression induced by inotodiol. However, inotodiol failed to induce phosphorylation of the IκB kinase and degradation of IκB-α, and increased expression of CD86 induced by inotodiol was not blocked by an IκB kinase inhibitor. These results suggest that inotodiol induces a characteristic type of maturation in DCs through phosphatidylinositol-3-kinase activation independent of NF-κB, and inotodiol-treated DCs enhance T cell proliferation and IL-2 secretion.


Subject(s)
Agaricales/chemistry , Bone Marrow Cells/drug effects , Cell Differentiation/drug effects , Dendritic Cells/drug effects , Inonotus/chemistry , Lanosterol/analogs & derivatives , Animals , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Cell Proliferation/drug effects , Cells, Cultured , Cytokines/immunology , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Lanosterol/chemistry , Lanosterol/pharmacology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Structure , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/immunology , Proto-Oncogene Proteins c-akt/metabolism , RAW 264.7 Cells
11.
Opt Express ; 28(26): 39048-39057, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33379462

ABSTRACT

In this study, photonic crystals with a partial bandgap are demonstrated in the visible region using single-crystal diamonds. Quasi-three-dimensional photonic crystal structures are fabricated in the surface of the single-crystal diamonds using a tetrahedron Faraday cage that enables angled dry etching in three directions simultaneously. The reflection spectra can be controlled by varying the lattice constant of the photonic crystals. In addition, nitrogen-vacancy center single-photon sources are implanted on top of the diamond photonic crystals, and doubled collection efficiency from the light sources is achieved.

12.
Opt Express ; 28(25): 38083-38092, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33379628

ABSTRACT

Particle identity and entanglement are two fundamental quantum properties that work as major resources for various quantum information tasks. However, it is still a challenging problem to understand the correlation of the two properties in the same system. While recent theoretical studies have shown that the spatial overlap between identical particles is necessary for nontrivial entanglement, the exact role of particle indistinguishability in the entanglement of identical particles has never been analyzed quantitatively before. Here, we theoretically and experimentally investigate the behavior of entanglement between two bosons as spatial overlap and indistinguishability simultaneously vary. The theoretical computation of entanglement for generic two bosons with pseudospins is verified experimentally in a photonic system. Our results show that the amount of entanglement is a monotonically increasing function of both quantities. We expect that our work provides an insight into deciphering the role of the entanglement in quantum networks that consist of identical particles.

13.
ACS Appl Mater Interfaces ; 12(45): 50628-50637, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-32986402

ABSTRACT

Organic semiconductors (OSCs) are of interest for replacing traditional Si-based semiconductors as their flexibility and transparency enable new applications. The properties of OSC materials greatly depend on their orientation and molecular arrangement, which are strongly dependent on the underlying substrate material. Hence, in this study, in situ ultraviolet photoelectron spectroscopy (UPS) is used to elucidate the effect of the substrate on OSC orientation. Two types of OSCs, namely those with shape anisotropy (pentacene, dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene, and dibenzothiopheno[6,5-b:6',5'-f]thieno[3,2-b]thiophene) and those with shape isotropy (N,N'-di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine, tris(4-carbazoyl-9-ylphenyl)amine, and [6,6]-phenyl C71 butyric acid methyl ester), are deposited on different electrode materials. The differences in the UPS spectra of these materials are observed directly. In general, the orientation of anisotropic OSC molecules significantly depends on the substrate properties, while that of the isotropic ones do not. All the anisotropic OSC molecules grown on poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT:PSS) electrodes show a greater degree of molecular ordering than those grown on Au and multiwalled carbon nanotube/PEDOT:PSS electrodes. The molecular arrangements within the OSC/electrode structures are reflected in the energy-level shifts in the corresponding UPS spectra and hence in the electronic configurations. The results of this study should aid the design and synthesis of OSC materials with configurations suitable for organic electronic devices.

14.
Opt Lett ; 45(9): 2624-2627, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32356832

ABSTRACT

Reference-frame-independent quantum key distribution (RFI-QKD) provides a practical way to generate secret keys between two remote parties without sharing common reference frames. On the other hand, measurement-device-independent QKD (MDI-QKD) offers a high level of security, as it is immune to all quantum hacking attempts to measurement devices. The combination of these two QKD protocols, i.e., RFI-MDI-QKD, is one of the most fascinating QKD protocols, since it holds advantages of both practicality and security. For further practicality of RFI-MDI-QKD, it is beneficial to reduce the implementation complexity. Here, we show that RFI-MDI-QKD can be implemented using fewer quantum states than those of its original proposal. We find that, in principle, the number of quantum states for one of the parties can be reduced from six to three without compromising security. Compared to conventional RFI-MDI-QKD where both parties transmit six quantum states, it significantly simplifies the implementation of the QKD protocol. We also verify the feasibility of the scheme with a proof-of-principle experiment.

15.
Opt Express ; 26(22): 29539-29549, 2018 Oct 29.
Article in English | MEDLINE | ID: mdl-30470116

ABSTRACT

Bell state measurement (BSM) plays crucial roles in photonic quantum information processing. The standard linear optical BSM is based on Hong-Ou-Mandel interference where two photons meet and interfere at a beamsplitter (BS). However, a generalized two-photon interference is not based on photon-photon interaction, but interference between two-photon probability amplitudes. Therefore, it might be possible to implement BSM without interfering photons at a BS. Here, we investigate a linear optical BSM scheme which does not require two photon overlapping at a BS. By unleashing the two photon coexistence condition, it can be symmetrically divided into two parties. The symmetrically dividable property suggests an informationally symmetrical BSM between remote parties without a third party. We also present that our BSM scheme can be used for Bell state preparation between remote parties without a third party. Since our BSM scheme can be easily extended to multiple photons, it can be useful for various quantum communication applications.

16.
Sci Rep ; 8(1): 8971, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29895990

ABSTRACT

A new miniplate applied differently from conventional application method for bone fixation has been developed. The novel approach is the insertion of the screw into the bone before miniplate installation. This study aimed to assess the stress distribution of a newly designed Yang's Keyhole (YK)- plate for segmental-bone fixation during sagittal split ramus osteotomy (SSO). Moreover, the effectiveness of the YK-plate system based on the clinical results was determined. The YK-plate system has a widened hole in the anterior region to permit a screw-head to be screwed through the system. The stress distribution using the finite-element analysis method was compared between in the case of the YK-plate system and the case of existing mini-plate fixation technique. Moreover, the clinical results of patients were evaluated during the follow-up examination periods. No critical complications in any of the six patients were reported during the four-month follow-up period. The result of the stress distribution using finite-element analysis showed a similar trend in all four fixation methods. The YK-plate system can be applied to fixation during SSO and allow for mechanically stable and convenient application.

17.
ACS Appl Mater Interfaces ; 10(29): 24549-24553, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-29944824

ABSTRACT

High-performance lithium-ion batteries (LIBs) are in increasing demand for a variety of applications in rapidly growing energy-related fields including electric vehicles. To develop high-performance LIBs, it is necessary to comprehensively understand the degradation mechanism of the LIB electrodes. From this viewpoint, it is crucial to investigate how the electrical properties of LIB electrodes change under charging and discharging. Here, we probe the local electrical properties of LIB electrodes with nanoscale resolution by scanning spreading resistance microscopy (SSRM). Via quantitative and comparative SSRM measurements on pristine and degraded LIB anodes of Si-C composites blended with graphite (Gr) particles, the electrical degradation of the LIB anodes is visualized. The electrical conductivity of the Si-C composite particles considerably degraded over 300 cycles of charging and discharging, whereas the Gr particles maintained their conductivity.

18.
Nat Commun ; 9(1): 853, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29472559

ABSTRACT

In the original version of this Article, the penultimate sentence of the second paragraph of the "Schematic and theory" section of the Results originally incorrectly read as "For instance, choosing θA = π/4, 0, -π/8 and π/8 rotates the bases |0>, |1>, |+>, and |-> into |1>, thereby implementing the observableÂ=|0><0|, |1><1|, |+><+| and, respectively." In the corrected version, "|-><-|" has been added before ", respectively". This error has been corrected in both the PDF and HTML versions of the Article.

19.
Nat Commun ; 9(1): 192, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29335489

ABSTRACT

The weak value concept has enabled fundamental studies of quantum measurement and, recently, found potential applications in quantum and classical metrology. However, most weak value experiments reported to date do not require quantum mechanical descriptions, as they only exploit the classical wave nature of the physical systems. In this work, we demonstrate measurement of the sequential weak value of two incompatible observables by making use of two-photon quantum interference so that the results can only be explained quantum physically. We then demonstrate that the sequential weak value measurement can be used to perform direct quantum process tomography of a qubit channel. Our work not only demonstrates the quantum nature of weak values but also presents potential new applications of weak values in analyzing quantum channels and operations.

20.
Phys Chem Chem Phys ; 20(4): 2914, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29303525

ABSTRACT

Correction for 'Direct characterization of graphene doping state by in situ photoemission spectroscopy with Ar gas cluster ion beam sputtering' by Dong-Jin Yun et al., Phys. Chem. Chem. Phys., 2018, 20, 615-622.

SELECTION OF CITATIONS
SEARCH DETAIL
...