Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncol Lett ; 26(6): 501, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37920436

ABSTRACT

Sakurasosaponin (S-saponin; PubChem ID: 3085160), a recently identified saponin from the roots of Primula sieboldii, has shown potential anticancer properties against various types of cancer. In the present study, the effects of S-saponin on non-small cell lung cancer (NSCLC) cell proliferation and the underlying mechanisms, were investigated. The effect of S-saponin on cell proliferation and cell death were assessed CCK-8, clonogenic assay, western blotting and Annexin V/PI double staining. S-saponin-induced autophagy was determined by confocal microscopic analysis and immunoblotting. S-saponin inhibited the proliferation of A549 and H1299 NSCLC cell lines in a dose- and time-dependent manner, without inducing apoptosis. S-saponin treatment induced autophagy in these cells, as evidenced by the increased LC3-II levels and GFP-LC3 puncta formation. It activated the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, which is crucial for autophagy induction. Inhibition of AMPK with Compound C or siRNA-mediated knockdown of AMPK abrogated S-saponin-induced autophagy and partially rescued cell proliferation. Therefore, S-saponin exerts anti-proliferative effects on NSCLC cells through autophagy induction via AMPK activation. Understanding the molecular mechanisms underlying the anticancer effects of S-saponin in NSCLC cells could provide insights for the development of novel therapeutic strategies for NSCLC.

2.
Oncol Rep ; 31(1): 131-6, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24190574

ABSTRACT

Nutlin-3, a human double minute 2 (HDM2) antagonist, induces cell cycle arrest or apoptosis by upregulating p53 in cancer cells. WT1, the product of Wilms' tumor gene 1, has been shown to interact with p53, but the effect of WT1 on nutlin-3-induced apoptosis has yet to be examined. To address this issue, we analyzed the inhibitory effect of nutlin-3 on cell growth as a function of Wt1 expression status using a Wt1-inducible U2OS cell line. In the absence of Wt1 expression, nutlin-3 induced cell cycle arrest with marginal cytotoxicity. Furthermore, upon Wt1 expression, nutlin-3 exerted a marked degree of cell death, as evidenced by the accumulation of hypo-diploid cells and LDH release. During cell death induction, cytochrome c was released into the cytosol, and caspase-9 and -3 were activated, suggesting that an intrinsic apoptotic pathway may be involved in this cell death. Consistent with this, z-VAD-Fmk, a pan-caspase inhibitor and the overexpression of BCL-XL attenuated the cell death. Nutlin-3 caused an increase in the mRNA levels of both BCL-XL and BAK, as well as their corresponding protein levels in mitochondria. In the presence of Wt1, nutlin-3-induced BCL-XL expression was attenuated while the expression of nutlin-3-induced BAK was potentiated. Collectively, these results suggest that WT1 potentiates nutlin-3-induced apoptosis by downregulating the expression of BCL-XL while upregulating that of BAK, which leads to the activation of an intrinsic apoptotic pathway.


Subject(s)
Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Imidazoles/pharmacology , Piperazines/pharmacology , WT1 Proteins/biosynthesis , Amino Acid Chloromethyl Ketones/pharmacology , Apoptosis/genetics , Caspase 3/metabolism , Caspase 9/metabolism , Caspase Inhibitors/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cytochromes c/metabolism , Down-Regulation , Enzyme Activation , Humans , Mitochondria , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , RNA, Messenger/biosynthesis , Tumor Suppressor Protein p53/biosynthesis , Up-Regulation , WT1 Proteins/genetics , bcl-2 Homologous Antagonist-Killer Protein/biosynthesis , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-X Protein/biosynthesis , bcl-X Protein/genetics
3.
Korean J Physiol Pharmacol ; 14(6): 407-12, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21311682

ABSTRACT

3-Deazaadenosine (DZA), a potent inhibitor of S-adenosylhomocysteine hydrolase, was previously proposed to induce intrinsic apoptosis in human leukemic cells. In the present study, we analyzed the mechanism underlying the DZA-induced intrinsic apoptotic pathway. DZA activated typical caspase-dependent apoptosis in HL-60 cells, as demonstrated by an accumulation of hypo-diploidic cells, the processing of multiple procaspases and an inhibitory effect of z-VAD-Fmk on this cell death. During DZA-induced apoptosis, cytochrome c (cyt c) was released into the cytosol. This was neither prevented by z-VAD-Fmk and nor was it associated with the dissipation of mitochondrial membrane potential (ΔΨ(m)). Prior to the release of cyt c, BAX was translocated from the cytosol to mitochondria and underwent oligomerization. Finally, the overexpression of BCL-XL protected HL-60 cells from apoptosis by blocking both the cyt c release and BAX oligomerization. Collectively, these findings suggest that DZA may activate intrinsic apoptosis by stimulating BAX activation and thereby the release of cyt c.

SELECTION OF CITATIONS
SEARCH DETAIL
...