Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Immune Netw ; 24(2): e7, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38725670

ABSTRACT

Viral load and the duration of viral shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important determinants of the transmission of coronavirus disease 2019. In this study, we examined the effects of viral doses on the lung and spleen of K18-hACE2 transgenic mice by temporal histological and transcriptional analyses. Approximately, 1×105 plaque-forming units (PFU) of SARS-CoV-2 induced strong host responses in the lungs from 2 days post inoculation (dpi) which did not recover until the mice died, whereas responses to the virus were obvious at 5 days, recovering to the basal state by 14 dpi at 1×102 PFU. Further, flow cytometry showed that number of CD8+ T cells continuously increased in 1×102 PFU-virus-infected lungs from 2 dpi, but not in 1×105 PFU-virus-infected lungs. In spleens, responses to the virus were prominent from 2 dpi, and number of B cells was significantly decreased at 1×105 PFU; however, 1×102 PFU of virus induced very weak responses from 2 dpi which recovered by 10 dpi. Although the defense responses returned to normal and the mice survived, lung histology showed evidence of fibrosis, suggesting sequelae of SARS-CoV-2 infection. Our findings indicate that specific effectors of the immune response in the lung and spleen were either increased or depleted in response to doses of SARS-CoV-2. This study demonstrated that the response of local and systemic immune effectors to a viral infection varies with viral dose, which either exacerbates the severity of the infection or accelerates its elimination.

2.
Adv Sci (Weinh) ; 11(14): e2308350, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38286667

ABSTRACT

Helical structures of liquid crystal elastomers (LCEs) hold promise in soft robotics for self-regulated rolling motions. The understanding of their motion paths and potentials for terrain exploration remains limited. This study introduces a self-adjusting, lateral-rolling soft robot inspired by sidewinder snakes. The spring-like LCE helical filaments (HFs) autonomously respond to thermal cues, demonstrating dynamic and sustainable locomotion with adaptive rolling along non-linear paths. By fine-tuning the diameter, pitch, and modulus of the LCE HFs, and the environmental temperature, the movements of the LCE HFs, allowing for exploration of diverse terrains over a 600 cm2 area within a few minutes, can be programmed. LCE HFs are showcased to navigate through over nine obstacles, including maze escaping, terrain exploration, target hunting, and successfully surmounting staircases through adaptable rolling.

3.
EBioMedicine ; 99: 104932, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38118400

ABSTRACT

BACKGROUND: The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to approximately 500 million cases and 6 million deaths worldwide. Previous investigations into the pathophysiology of SARS-CoV-2 primarily focused on peripheral blood mononuclear cells from patients, lacking detailed mechanistic insights into the virus's impact on inflamed tissue. Existing animal models, such as hamster and ferret, do not faithfully replicate the severe SARS-CoV-2 infection seen in patients, underscoring the need for more relevant animal system-based research. METHODS: In this study, we employed single-cell RNA sequencing (scRNA-seq) with lung tissues from K18-hACE2 transgenic (TG) mice during SARS-CoV-2 infection. This approach allowed for a comprehensive examination of the molecular and cellular responses to the virus in lung tissue. FINDINGS: Upon SARS-CoV-2 infection, K18-hACE2 TG mice exhibited severe lung pathologies, including acute pneumonia, alveolar collapse, and immune cell infiltration. Through scRNA-seq, we identified 36 different types of cells dynamically orchestrating SARS-CoV-2-induced pathologies. Notably, SPP1+ macrophages in the myeloid compartment emerged as key drivers of severe lung inflammation and fibrosis in K18-hACE2 TG mice. Dynamic receptor-ligand interactions, involving various cell types such as immunological and bronchial cells, defined an enhanced TGFß signaling pathway linked to delayed tissue regeneration, severe lung injury, and fibrotic processes. INTERPRETATION: Our study provides a comprehensive understanding of SARS-CoV-2 pathogenesis in lung tissue, surpassing previous limitations in investigating inflamed tissues. The identified SPP1+ macrophages and the dysregulated TGFß signaling pathway offer potential targets for therapeutic intervention. Insights from this research may contribute to the development of innovative diagnostics and therapies for COVID-19. FUNDING: This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020M3A9I2109027, 2021R1A2C2004501).


Subject(s)
COVID-19 , Melphalan , gamma-Globulins , Animals , Cricetinae , Mice , Humans , SARS-CoV-2 , Leukocytes, Mononuclear , Ferrets , Bronchi , Transforming Growth Factor beta , Mice, Transgenic , Disease Models, Animal , Lung
5.
Exp Mol Med ; 55(12): 2541-2552, 2023 12.
Article in English | MEDLINE | ID: mdl-37907741

ABSTRACT

Translational regulation in tissue environments during in vivo viral pathogenesis has rarely been studied due to the lack of translatomes from virus-infected tissues, although a series of translatome studies using in vitro cultured cells with viral infection have been reported. In this study, we exploited tissue-optimized ribosome profiling (Ribo-seq) and severe-COVID-19 model mice to establish the first temporal translation profiles of virus and host genes in the lungs during SARS-CoV-2 pathogenesis. Our datasets revealed not only previously unknown targets of translation regulation in infected tissues but also hitherto unreported molecular signatures that contribute to tissue pathology after SARS-CoV-2 infection. Specifically, we observed gradual increases in pseudoribosomal ribonucleoprotein (RNP) interactions that partially overlapped the trails of ribosomes, being likely involved in impeding translation elongation. Contemporaneously developed ribosome heterogeneity with predominantly dysregulated 5 S rRNP association supported the malfunction of elongating ribosomes. Analyses of canonical Ribo-seq reads (ribosome footprints) highlighted two obstructive characteristics to host gene expression: ribosome stalling on codons within transmembrane domain-coding regions and compromised translation of immunity- and metabolism-related genes with upregulated transcription. Our findings collectively demonstrate that the abrogation of translation integrity may be one of the most critical factors contributing to pathogenesis after SARS-CoV-2 infection of tissues.


Subject(s)
COVID-19 , Animals , Mice , RNA, Messenger/genetics , COVID-19/genetics , SARS-CoV-2/genetics , Protein Biosynthesis , Lung/metabolism
6.
Mater Horiz ; 10(11): 5313, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37850369

ABSTRACT

Retraction of 'Progressive p-channel vertical transistors fabricated using electrodeposited copper oxide designed with grain boundary tunability' by Sung Hyeon Jung et al., Mater. Horiz., 2022, 9, 1010-1022, https://doi.org/10.1039/D1MH01568K.

7.
Sci Adv ; 9(20): eadh5107, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37196078

ABSTRACT

The transition from one equilibrium state to another via rapid snap-through can store elastic energy and release it as kinetic energy for rapid motion as seen in Venus flytrap and hummingbird to catch insects mid-flight. They are explored in soft robotics for repeated and autonomous motions. In this study, we synthesize curved liquid crystal elastomer (LCE) fibers as the building blocks that can undergo buckling instability upon heated on a hot surface, leading to autonomous snap-through and rolling behaviors. When they are connected into lobed loops, where each fiber is geometrically constrained by the neighboring ones, they demonstrate autonomous, self-regulated, and repeated synchronization with a frequency of ~1.8 Hz. By adding a rigid bead on the fiber, we can fine-tune the actuation direction and speed (up to ~2.4 mm/s). Last, we demonstrate various gait-like locomotion patterns using the loops as the robot's legs.

8.
Pulm Pharmacol Ther ; 80: 102189, 2023 06.
Article in English | MEDLINE | ID: mdl-36634813

ABSTRACT

Throughout the recent COVID-19 pandemic, South Korea led national efforts to develop vaccines and therapeutics for SARS-CoV-2. The project proceeded as follows: 1) evaluation system setup (including Animal Biosafety Level 3 (ABSL3) facility alliance, standardized nonclinical evaluation protocol, and laboratory information management system), 2) application (including committee review and selection), and 3) evaluation (including expert judgment and reporting). After receiving 101 applications, the selection committee reviewed pharmacokinetics, toxicity, and efficacy data and selected 32 final candidates. In the nonclinical efficacy test, we used golden Syrian hamsters and human angiotensin-converting enzyme 2 transgenic mice under a cytokeratin 18 promoter to evaluate mortality, clinical signs, body weight, viral titer, neutralizing antibody presence, and histopathology. These data indicated eight new drugs and one repositioned drug having significant efficacy for COVID-19. Three vaccine and four antiviral drugs exerted significant protective activities against SARS-CoV-2 pathogenesis. Additionally, two anti-inflammatory drugs showed therapeutic effects on lung lesions and weight loss through their mechanism of action but did not affect viral replication. Along with systematic verification of COVID-19 animal models through large-scale studies, our findings suggest that ABSL3 multicenter alliance and nonclinical evaluation protocol standardization can promote reliable efficacy testing against COVID-19, thus expediting medical product development.


Subject(s)
COVID-19 , Animals , Cricetinae , Mice , Humans , SARS-CoV-2 , Pandemics , Antibodies, Neutralizing , Mesocricetus , Disease Models, Animal
10.
Front Immunol ; 13: 1055811, 2022.
Article in English | MEDLINE | ID: mdl-36457995

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) has been a global health concern since 2019. The viral spike protein infects the host by binding to angiotensin-converting enzyme 2 (ACE2) expressed on the cell surface, which is then processed by type II transmembrane serine protease. However, ACE2 does not react to SARS-CoV-2 in inbred wild-type mice, which poses a challenge for preclinical research with animal models, necessitating a human ACE2 (hACE2)-expressing transgenic mouse model. Cytokeratin 18 (K18) promoter-derived hACE2 transgenic mice [B6.Cg-Tg(K18-ACE2)2Prlmn/J] are widely used for research on SARS-CoV-1, MERS-CoV, and SARS-CoV-2. However, SARS-CoV-2 infection is lethal at ≥105 PFU and SARS-CoV-2 target cells are limited to type-1 alveolar pneumocytes in K18-hACE2 mice, making this model incompatible with infections in the human lung. Hence, we developed lung-specific SARS-CoV-2 infection mouse models with surfactant protein B (SFTPB) and secretoglobin family 1a member 1 (Scgb1a1) promoters. After inoculation of 105 PFU of SARS-CoV-2 to the K18-hACE2, SFTPB-hACE2, and SCGB1A1-hACE2 models, the peak viral titer was detected at 2 days post-infection and then gradually decreased. In K18-hACE2 mice, the body temperature decreased by approximately 10°C, body weight decreased by over 20%, and the survival rate was reduced. However, SFTPB-hACE2 and SCGB1A1-hACE2 mice showed minimal clinical signs after infection. The virus targeted type I pneumocytes in K18-hACE2 mice; type II pneumocytes in SFTPB-hACE2 mice; and club, goblet, and ciliated cells in SCGB1A1-hACE2 mice. A time-dependent increase in severe lung lesions was detected in K18-hACE2 mice, whereas mild lesions developed in SFTPB-hACE2 and SCGB1A1-hACE2 mice. Spleen, small intestine, and brain lesions developed in K18-hACE2 mice but not in SFTPB-hACE2 and SCGB1A1-hACE2 mice. These newly developed SFTPB-hACE2 and SCGB1A1-hACE2 mice should prove useful to expand research on hACE2-mediated respiratory viruses.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Animals , Humans , Mice , Alveolar Epithelial Cells/virology , Angiotensin-Converting Enzyme 2/genetics , Disease Models, Animal , Mice, Transgenic , SARS-CoV-2
11.
Mol Cells ; 45(12): 896-910, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36324270

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and potentially fatal virus. So far, most comprehensive analyses encompassing clinical and transcriptional manifestation have concentrated on the lungs. Here, we confirmed evident signs of viral infection in the lungs and spleen of SARS-CoV-2-infected K18-hACE2 mice, which replicate the phenotype and infection symptoms in hospitalized humans. Seven days post viral detection in organs, infected mice showed decreased vital signs, leading to death. Bronchopneumonia due to infiltration of leukocytes in the lungs and reduction in the spleen lymphocyte region were observed. Transcriptome profiling implicated the meticulous regulation of distress and recovery from cytokine-mediated immunity by distinct immune cell types in a time-dependent manner. In lungs, the chemokine-driven response to viral invasion was highly elevated at 2 days post infection (dpi). In late infection, diseased lungs, post the innate immune process, showed recovery signs. The spleen established an even more immediate line of defense than the lungs, and the cytokine expression profile dropped at 7 dpi. At 5 dpi, spleen samples diverged into two distinct groups with different transcriptome profile and pathophysiology. Inhibition of consecutive host cell viral entry and massive immunoglobulin production and proteolysis inhibition seemed that one group endeavored to survive, while the other group struggled with developmental regeneration against consistent viral intrusion through the replication cycle. Our results may contribute to improved understanding of the longitudinal response to viral infection and development of potential therapeutics for hospitalized patients affected by SARS-CoV-2.


Subject(s)
COVID-19 , Virus Diseases , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Cytokines , Disease Models, Animal , Gene Expression Profiling , Lung , Mice, Transgenic , SARS-CoV-2 , Spleen/metabolism , Transcriptome
12.
Dis Model Mech ; 15(11)2022 11 01.
Article in English | MEDLINE | ID: mdl-36222118

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, causes life-threatening disease. This novel coronavirus enters host cells via the respiratory tract, promoting the formation of severe pulmonary lesions and systemic disease. Few animal models can simulate the clinical signs and pathology of COVID-19 patients. Diverse preclinical studies using K18-hACE2 mice and Syrian golden hamsters, which are highly permissive to SARS-CoV-2 in the respiratory tract, are emerging; however, the systemic pathogenesis and cellular tropism of these models remain obscure. We intranasally infected K18-hACE2 mice and Syrian golden hamsters with SARS-CoV-2, and compared the clinical features, pathogenesis, cellular tropism and infiltrated immune-cell subsets. In K18-hACE2 mice, SARS-CoV-2 persistently replicated in alveolar cells and caused pulmonary and extrapulmonary disease, resulting in fatal outcomes. Conversely, in Syrian golden hamsters, transient SARS-CoV-2 infection in bronchial cells caused reversible pulmonary disease, without mortality. Our findings provide comprehensive insights into the pathogenic spectrum of COVID-19 using preclinical models.


Subject(s)
COVID-19 , Cricetinae , Mice , Animals , Mesocricetus , SARS-CoV-2 , Disease Models, Animal , Lung/pathology , Mice, Transgenic
13.
Lab Anim Res ; 38(1): 17, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35765097

ABSTRACT

BACKGROUND: As the number of large-scale studies involving multiple organizations producing data has steadily increased, an integrated system for a common interoperable format is needed. In response to the coronavirus disease 2019 (COVID-19) pandemic, a number of global efforts are underway to develop vaccines and therapeutics. We are therefore observing an explosion in the proliferation of COVID-19 data, and interoperability is highly requested in multiple institutions participating simultaneously in COVID-19 pandemic research. RESULTS: In this study, a laboratory information management system (LIMS) approach has been adopted to systemically manage various COVID-19 non-clinical trial data, including mortality, clinical signs, body weight, body temperature, organ weights, viral titer (viral replication and viral RNA), and multiorgan histopathology, from multiple institutions based on a web interface. The main aim of the implemented system is to integrate, standardize, and organize data collected from laboratories in multiple institutes for COVID-19 non-clinical efficacy testings. Six animal biosafety level 3 institutions proved the feasibility of our system. Substantial benefits were shown by maximizing collaborative high-quality non-clinical research. CONCLUSIONS: This LIMS platform can be used for future outbreaks, leading to accelerated medical product development through the systematic management of extensive data from non-clinical animal studies.

14.
Mater Horiz ; 9(3): 1010-1022, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-34985074

ABSTRACT

A strategically designed electrodeposition method is proposed for the coating of p-type copper(i) oxide (Cu2O) channels for oxide thin film transistors. To date, conventional p-type oxide semiconductors have revealed a poor mobility and stability and this has obstructed the development of all oxide based logic devices. Furthermore, previous studies on p-type oxide transistors have been limited by the use of a typical planar type configuration. Our Cu2O electrodeposition method designed by incorporating Sb element promotes vertical alignment of the grain boundaries (GBs) and it perfectly coincides with the charge transport direction from the source to the drain in the vertical field effect transistors. These vertically aligned GBs are bundle type GBs and are likely to be ideal for vertical transistors with supreme electrical performances owing to the structurally suppressed grain boundary charge scattering. This alignment of the GBs in the electrodeposited Sb doped Cu2O (Sb:Cu2O) also demonstrates a superior vertical taper profile with conventional wet chemical etching owing to the extremely preferential etching rate along the GBs. Surprisingly, the sidewall formation, with a smooth and steep morphology causes the formation of abrupt and non-defective gate insulator/channel interfaces for superior spacer-free vertical transistors. Consequently, the Cu2O vertical field effect transistors exhibit extraordinary transistor performances of Vth = 0.4 V, µFE = 8 cm2 V-1 s-1, subthreshold swing = 0.24 V dec-1, on/off current ratio = 2 × 108 and qualified electrical and long-term stability characteristics under various environments. To the best of our knowledge, this is the first reported study on an electrodeposited method to design troublesome p-type oxide Cu2O as novel vertical transistors. Finally, power efficient logic inverter circuits with unprecedented performances, such as good noise margins, remarkable gain values of 15.6 (2 VDD) and 62.7 (5 VDD), and high frequency operation up to 10 kHz, are demonstrated using these p-type Cu2O transistors by interconnecting n-type IGZO transistors.

15.
Macromol Rapid Commun ; 42(21): e2100404, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34418205

ABSTRACT

Beyond a traditional stimuli-responsive soft actuator that shows a single motion by a stimulus, multidirectional actuation reversal with a single stimulus is highly required in applications such as shape morphing sensors and soft robotics. Liquid crystal elastomers (LCEs) are one of the most attractive candidates for the soft actuator due to their capability of stimuli-responsive shape changing in 3D, which is programmable with local orientation of LC mesogens. Here, a simple but effective method to fabricate monolithic LCE actuators that are capable of reversible curvature reversal in bending and twisting deformation by a single stimulus-heat-is reported. The curvature reversal of the LCE film can be programmed by means of asymmetric crosslinking density along the thickness and the orientation of the LC mesogens. The curvature reversal of the monolithic LCE film exhibits highly reversible (more than 100 times) and fast actuation (≈3-5 s) by heating and cooling, allowing new concept of a practical application using LCE material: a self-regulated smart valve that is capable of qualitatively sorting liquids by temperature. It is believed that this system is potentially applied to a self-regulated sorting platform for various endothermic and exothermic chemical or biological reactions.


Subject(s)
Liquid Crystals , Robotics , Elastomers , Temperature
16.
ACS Appl Mater Interfaces ; 13(16): 18772-18783, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33856769

ABSTRACT

As an alternative to the oxygen evolution reaction (OER) electrocatalyst developed by a complex bi- or multimetal ion with layered double hydroxide (LDH) structures, we design a simple, self-supported, and single-metal-ion OER electrocatalyst having lower overpotentials and high current densities in alkaline water electrolyzers. Here, ß-like FeOOH nanosword structures encapsulated by reduced graphene oxide (rGO) were cost-effectively synthesized on formable Ni foam substrates as an efficient and highly durable OER catalyst. It is revealed that the rGO uniformly covered the ß-like FeOOH nanoswords to form a porous network achieving a lower overpotential of only 210 mV at 10 mA cm-2 with a stable operation for more than 40 h in alkali media. Moreover, a high current density of ∼300 mA cm-2 was achieved at less than 1.8 V. In-depth physical and electrochemical analysis indicated that the intrinsic charge transfer through activated Ni-foam, ß-like phase, and nanosword morphology was evidently beneficial for enhancing the OER activity of the bare FeOOH, and its encapsulation by rGO further improved the conductivity and long-life durability. Our integrated OER electrocatalyst developed by a simple method (repeated soaking and quenching process) will aid in scaling up ß-like FeOOH nanoswords for preparing uniform and large-area electrodes for industrial purposes.

17.
Micromachines (Basel) ; 12(3)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33810027

ABSTRACT

An effective strategy for improving the charge transport efficiency of p-type Cu2O photocathodes is the use of counter n-type semiconductors with a proper band alignment, preferably using Al-doped ZnO (AZO). Atomic layer deposition (ALD)-prepared AZO films show an increase in the built-in potential at the Cu2O/AZO interface as well as an excellent conformal coating with a thin thickness on irregular Cu2O. Considering the thin thickness of the AZO overlayers, it is expected that the composition of the Al and the layer stacking sequence in the ALD process will significantly influence the charge transport behavior and the photoelectrochemical (PEC) performance. We designed various stacking orders of AZO overlayers where the stacking layers consisted of Al2O3 (or Al) and ZnO using the atomically controlled ALD process. Al doping in ZnO results in a wide bandgap and does not degrade the absorption efficiency of Cu2O. The best PEC performance was obtained for the sample with an AZO overlayer containing conductive Al layers in the bottom and top regions. The Cu2O/AZO/TiO2/Pt photoelectrode with this overlayer exhibits an open circuit potential of 0.63 V and maintains a high cathodic photocurrent value of approximately -3.2 mA cm-2 at 0 VRHE for over 100 min.

18.
ChemSusChem ; 13(11): 3017-3027, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32202388

ABSTRACT

Antimony selenide (Sb2 Se3 ) nanostructures enable bifunctional water purification by a single membrane through i) physical separation of water-insoluble oil and ii) photoelectrocatalytic degradation of water-soluble organic compounds. Sb2 Se3 nanorods with exposed surfaces of {h 0 0} and {h 0 l} planes exhibit superhydrophobicity (water contact angle of ≈159°) owing to extremely low surface energy of those dangling-bond-free van der Waals planes. Based on crystallographic understanding, superhydrophobic Sb2 Se3 nanorods were produced on a mesh-type substrate for utilization as a membrane for physical water/oil separation. Sb2 Se3 exhibited an optimal photocathodic response with p-type electrical conductivity under visible light along the longitudinal crystal direction. This indicated that the nanorods could be used as photoelectrocatalytic material for chemical water purification. A smart membrane with Sb2 Se3 nanostructures was proposed as a candidate for integrated water purification that can simultaneously accomplish water/oil separation and photoelectrocatalytic degradation of organic compounds in wastewater. Linear sweep voltammetry measurements of the Sb2 Se3 -membrane showed cathodic photocurrent generation (up to approximately 10 mA cm-2 at 0 V vs. reversible hydrogen electrode), which was enough to reduce O2 to an oxygen radical (O2 .- ) for degradation of methyl orange. Consequently, solar-driven integrated water purification was demonstrated for the first time by using a single material with a dual function of superhydrophobicity and photoactivity.

19.
ACS Appl Mater Interfaces ; 11(31): 28397-28406, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31304734

ABSTRACT

Rapid degradations are typically encountered in low-temperature processed oxide thin-film transistors (TFTs) with a high indium composition and quasi-two-dimensional (Q2D) thin channel, owing to the breaking of numerous surface bonds of the Q2D oxide and the ineffectiveness of oxidation treatment. Strategically, a novel approach is proposed for the effective use of non-centrosymmetric nitrous oxide (NO2) as a reactive oxidizer gas for realizing the highly robust and rapid field-effect mobility properties of low-temperature-processed Q2D amorphous indium zinc oxide (a-IZO) TFTs. From the surface chemical analysis, it is found that NO2 stably reconstructs surface chemical bonding with NO3- ions by capturing the charged electrons and oxygen and the regions with and without NO2 treatment display extreme differences in their electrical conductivity. Thus, a new process design can be suggested for the fabrication of self-aligned coplanar Q2D transistors, with the aim of scaling down and replacing conventional hydrogen treatment or ultraviolet irradiation. This concept is tactically designed considering the problematic aging effect and impact of the NO2 treatment. The self-aligned coplanar top-gate Q2D a-IZO TFTs exhibit outstanding device performance with a field-effect mobility of 30.1 cm2 V-1 s-1 and a relatively low positive bias stress shift of 1.3 V at an extremely low process temperature of 80 °C.

20.
ACS Nano ; 13(5): 5987-5998, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31083962

ABSTRACT

We have developed an artificially controllable strategy of an electrodeposition process adequate for resistive random-access memory (ReRAM) applications of binary Cu2O. Typically, the precise control of OH- ion concentration (the intermediate supplier of oxygen ions) at the electrode's surface decides the overall reaction rate of the Cu2O. Here, the suggested Pb and Sb metal additives preferentially contribute to the consumption of OH- ions and the supply of OH- ions, respectively, during the Cu2O electrochemical reaction so that the final products are the (200) preferential quadrangular pyramids and the (111) preferential triangular pyramids. Interestingly, the coexistence of Sb/Pb precursors in the Cu electrolytes results in extraordinarily decreased reaction rate from the opposite action of OH- ion utilization as well as intense progressive growth behavior, and the resultant Cu2O films consist of crystallized small-size nanoparticles (NPs) in an amorphous-like matrix. In the case of ReRAM applications, while the polycrystalline film induces irregular device performance and the amorphous layer shows an easily irreparable electrical breakdown, our NP-assembled Cu2O films from Pb/Sb metal ions reveal the formation of a conduction bridge via phase change to a crystalline filament with no need for forming voltage and with superior electrical stability. It is attributed to the coalescence of crystal NPs into large grains during the set/reset cycle process for the heat dissipation of Joule heating. The Cu2O sample prepared with a 3 mM Sb + 3 mM Pb mixture solution exhibits forming-free ReRAM devices with high on/off resistance ratios of 1.2 × 104 and long-term electrical/thermal stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...