Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
ACS Omega ; 8(20): 18064-18073, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37251163

ABSTRACT

Simple temperature-regulated chemical vapor deposition was used to disperse iron oxide nanoparticles on porous Al2O3 to create an Fe-oxide/Al2O3 structure for catalytic NH3 oxidation. The Fe-oxide/Al2O3 achieved nearly 100% removal of NH3, with N2 as a major reaction product at temperatures above 400 °C and negligible NOx emissions at all experimental temperatures. The results of a combination of in situ diffuse reflectance infrared Fourier-transform spectroscopy and near-ambient pressure-near-edge X-ray absorption fine structure spectroscopy suggest a N2H4-mediated oxidation mechanism of NH3 to N2 via the Mars-van Krevelen pathway on the Fe-oxide/Al2O3 surface. As a catalytic adsorbent-an energy-efficient approach to reducing NH3 levels in living environments via adsorption and thermal treatment of NH3-no harmful NOx emissions were produced during the thermal treatment of the NH3-adsorbed Fe-oxide/Al2O3 surface, while NH3 molecularly desorbed from the surface. A system with dual catalytic filters of Fe-oxide/Al2O3 was designed to fully oxidize this desorbed NH3 to N2 in a clean and energy-efficient manner.

2.
ACS Omega ; 7(48): 43492-43498, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36506148

ABSTRACT

The adsorption of peptides and proteins on hydrophobic solid surfaces has received considerable research attention owing to their wide applications to biocompatible nanomaterials and nanodevices, such as biosensors and cell adhesion materials with reduced nanomaterial toxicity. However, fundamental understandings about physicochemical hydrophobic interactions between peptides and hydrophobic solid surfaces are still unknown. In this study, we investigate the effect of secondary structures on adsorption energies between peptides and hydrophobic solid surfaces via experimental and theoretical analyses using surface-assisted laser desorption/ionization-time-of-flight (SALDI-TOF) and molecular dynamics (MD) simulations. The hydrophobic interactions between peptides and hydrophobic solid surfaces measured via SALDI-TOF and MD simulations indicate that the hydrophobic interaction of peptides with random coil structures increased more than that of peptides with an α-helix structure when polar amino acids are replaced with hydrophobic amino acids. Additionally, our study sheds new light on the fundamental understanding of the hydrophobic interaction between hydrophobic solid surfaces and peptides that have diverse secondary structures.

3.
Int J Mol Sci ; 23(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35628102

ABSTRACT

The careful design of nanostructures and multi-compositions of non-noble metal-based electrocatalysts for highly efficient electrocatalytic hydrogen and oxygen evolution reaction (HER and OER) is of great significance to realize sustainable hydrogen release. Herein, bifunctional electrocatalysts of the three-dimensional (3D) cobalt-nickel phosphide nanoarray in situ grown on nickel foams (CoNiP NA/NF) were synthesized through a facile hydrothermal method followed by phosphorization. Due to the unique self-template nanoarray structure and tunable multicomponent system, the CoNiP NA/NF samples present exceptional activity and durability for HER and OER. The optimized sample of CoNiP NA/NF-2 afforded a current density of 10 mA cm-2 at a low overpotential of 162 mV for HER and 499 mV for OER, corresponding with low Tafel slopes of 114.3 and 79.5 mV dec-1, respectively. Density functional theory (DFT) calculations demonstrate that modulation active sites with appropriate electronic properties facilitate the interaction between the catalyst surface and intermediates, especially for the adsorption of absorbed H* and *OOH intermediates, resulting in an optimized energy barrier for HER and OER. The 3D nanoarray structure, with a large specific surface area and abundant ion channels, can enrich the electroactive sites and enhance mass transmission. This work provides novel strategies and insights for the design of robust non-precious metal catalysts.


Subject(s)
Nickel , Water , Aerosols , Hydrogen , Oxygen , Porosity
4.
Article in English | MEDLINE | ID: mdl-35549024

ABSTRACT

Commercial rutile TiO2 particles capped with Al2O3 and ZrO2 layers, which are widely used in white pigments, can serve as a starting material for the fabrication of visible light-responsive photocatalysts toward gas-phase NO oxidation. The as-received TiO2 with iron impurities exhibited reduced photocatalytic activity, and the activity was boosted by the deposition of additional iron comparable in quantity to the intrinsic iron impurity level. Analyses using X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectroscopy, and low-energy ion scattering spectroscopy revealed that the deposited iron and intrinsic impurity iron are dissimilar in terms of location, oxidation states, and interaction with TiO2. This suggests that tracking the structure and impurity levels of photocatalyst elements can be crucial for understanding structure-activity relationships of real catalysts.

5.
ACS Appl Mater Interfaces ; 14(7): 9116-9125, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35133810

ABSTRACT

Clarifying the responsibilities and constructing the synergy of different active phases are of great significance but still an urgent challenge for the heterostructure catalyst to improve the hydrogen evolution reaction (HER) process. Here, three-dimensional (3D) CoxNi(1-x)(OH)2 hollow structure integrating MoS2 nanosheet catalysts [CoxNi(1-x)(OH)2@MoS2] were ingeniously designed and prepared. This unique structure has realized the construction of a dual active phase for the optimized stepwise-synergetic hydrogen evolution process over a universal pH range through interface assembly engineering. Meanwhile, the 3D hollow heterostructure with a high surface-to-volume ratio can effectively avoid the agglomeration of MoS2 and enhance the CoxNi(1-x)(OH)2-MoS2 heterointerfaces. Thus, superior HER activity and stability were obtained over the universal pH range. Density functional theory calculation reveals that CoxNi(1-x)(OH)2 and MoS2 phases provide efficient active sites for rate-determining water dissociation and H* adsorption/H2 generation on CoxNi(1-x)(OH)2-MoS2 heterointerfaces, respectively, resulting in an optimized energy barrier for HER. This work proposes a constructive strategy to design highly efficient electrocatalysts based on the heterointerface with a defined responsible active phase of electrocatalysts.

6.
Chem Sci ; 12(28): 9619-9629, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34349934

ABSTRACT

Photocatalytic N2 fixation to NH3 via defect creation on TiO2 to activate ultra-stable N[triple bond, length as m-dash]N has drawn enormous scientific attention, but poor selectivity and low yield rate are the major bottlenecks. Additionally, whether N2 preferentially adsorbs on phase-selective defect sites on TiO2 in correlation with appropriate band alignment has yet to be explored. Herein, theoretical predictions reveal that the defect sites on disordered anatase (Ad) preferentially exhibit higher N2 adsorption ability with a reduced energy barrier for a potential-determining-step (*N2 to NNH*) than the disordered rutile (Rd) phase of TiO2. Motivated by theoretical simulations, we synthesize a phase-selective disordered-anatase/ordered-rutile TiO2 photocatalyst (Na-Ad/Ro) by sodium-amine treatment of P25-TiO2 under ambient conditions, which exhibits an efficient NH3 formation rate of 432 µmol g-1 h-1, which is superior to that of any other defect-rich disordered TiO2 under solar illumination with a high apparent quantum efficiency of 13.6% at 340 nm. The multi-synergistic effects including selective N2 chemisorption on the defect sites of Na-Ad with enhanced visible-light absorption, suitable band alignment, and rapid interfacial charge separation with Ro enable substantially enhanced N2 fixation.

7.
J Hazard Mater ; 418: 126317, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34119970

ABSTRACT

Toluene removal rates using activated carbon (AC) at various relative humidity (RH) levels (0%, 30%, 60%) were compared under dark and visible-light conditions. Light exposure significantly increased toluene-removal efficiency independent of RH. When AC was pre-treated with an optimal concentration of HNO3, its toluene-removal efficiency was enhanced further with light, an effect that can be attributed to increased surface-area and porosity. Fourier-transform infrared analysis confirmed that exposure of HNO3-modified AC to light induced partial oxidation of toluene. Within visible-light range (380-650 nm), shorter wavelengths were more effective for toluene-removal compared with longer wavelengths. This suggests that hydroxyl groups formed on AC-surface under light strongly interact with aromatic rings of toluene, allowing for greater uptake of toluene. Moreover, AC can sustain its photo-activity when mixed with cement and cured, suggesting its potential applications in air-purifying building materials. An efficient and practical method for regeneration of spent AC is also demonstrated.

8.
ACS Omega ; 4(3): 5382-5391, 2019 Mar 31.
Article in English | MEDLINE | ID: mdl-31459704

ABSTRACT

Fe x O y H z nanostructures were incorporated into commercially available and highly porous alumina using the temperature-regulated chemical vapor deposition method with ferrocene as an Fe precursor and subsequent annealing. All processes were conducted under ambient pressure conditions without using any high-vacuum equipment. The entire internal micro- and mesopores of the Al2O3 substrate with a bead diameter of ∼2 mm were evenly decorated with Fe x O y H z nanoparticles. The Fe x O y H z /Al2O3 structures showed substantially high activity for acetaldehyde oxidation. Most importantly, Fe x O y H z /Al2O3 with a high surface area (∼200 m2/g) and abundant mesopores was found to uptake a large amount of acetaldehyde at room temperature, and subsequent thermal regeneration of Fe x O y H z /Al2O3 in air resulted in the emission of CO2 with only a negligibly small amount of acetaldehyde because Fe x O y H z nanoparticles can catalyze total oxidation of adsorbed acetaldehyde during the thermal treatment. Increase in the humidity of the atmosphere decreased the amount of acetaldehyde adsorbed on the surface due to the competitive adsorption of acetaldehyde and water molecules, although the adsorptive removal of acetaldehyde and total oxidative regeneration were verified under a broad range of humidity conditions (0-70%). Combinatory use of room-temperature adsorption and catalytic oxidation of adsorbed volatile organic compounds using Fe x O y H z /Al2O3 can be of potential application in indoor and outdoor pollution treatments.

9.
ACS Omega ; 4(6): 9745-9755, 2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31460065

ABSTRACT

Mesoporous SiO2 adsorbents were combined with Fe oxide nanoparticles (∼10 nm) that can catalyze thermal oxidation of organic compounds at low temperatures. Fe oxide nanoparticle (∼10 nm)-incorporated SiO2 adsorbents were prepared via a temperature-regulated chemical vapor deposition method followed by a thermal annealing process. The removal efficiency and reusability of Fe oxide/SiO2 particles were examined and compared to those of bare SiO2. Upon deposition of Fe oxide nanoparticles, not only the equilibrium adsorption capacity of mesoporous SiO2 for methylene blue (MB) was improved but also the reusability of SiO2 adsorbent was increased significantly. The adsorption ability of fresh Fe oxide/SiO2 particles can be almost fully recovered by simple thermal annealing at atmospheric conditions (400 °C), whereas that of bare SiO2 reduced significantly under same conditions. In addition, full recovery of initial MB adsorption ability of Fe oxide/SiO2 can be achieved by a 100 °C annealing process. Fourier transform infrared, thermogravimetric analysis, and X-ray photoelectron spectroscopy analyses indicated that Fe oxide nanoparticles catalyzed thermal degradation of adsorbed MB molecules, resulting in the improved reusability of the Fe oxide/SiO2 adsorbent. In addition to reusability, the equilibrium adsorption capacity of mesoporous SiO2 particles for various cationic dye molecules, such as MB, malachite green, and rhodamine B, can be improved by combining Fe oxide nanoparticles.

10.
ACS Omega ; 4(8): 13100-13105, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31460437

ABSTRACT

Au nanoparticles with a mean diameter of 20 nm with a coverage of ∼20% of the surface were distributed on a Si wafer surface and studied both before and after being annealed (at 100 and 300 °C). The two types of samples were analyzed using secondary ion mass spectroscopy (SIMS) with Bi3 + clusters as the primary ions combined with surface etching using Ar1000 + clusters. We observed a substantial difference in the SIMS spectra combined with a relatively short sputtering time of Ar1000 +. In the nonannealed samples, bare Au cluster cations and Si+ were observed in the SIMS spectra; AuSi+ clusters were also observed in the annealed samples. These results indicate Au-silicide formation at a part of the periphery of the Au nanoparticles upon annealing. We suggest that SIMS experiments using cluster ions such as Bi3 + can not only be used for surface elemental analyses but also provide information on local chemical environments of elements on the surface. This is an important issue in heterogeneous catalysis (e.g., strong metal-support interactions). We also advise that one should be careful interpreting the SIMS data combined with a longer Ar1000 + sputtering time because this can deteriorate the surfaces from their original structures.

11.
RSC Adv ; 9(19): 10693-10701, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-35515324

ABSTRACT

In an effort to develop efficient substrates to sense organophosphonate nerve agents, we used the density-functional theory calculations to determine binding energies and geometries of 1 : 1 complexes formed between dimethyl methylphosphonate (DMMP) and 13 thiourea derivatives (TUn), including four newly-synthesized ones (n = 10-13). The four new thiourea derivatives have a 3,5-bis-(trifluoromethyl)phenyl group as one N-substituent and an alkylphenyl group with zero to three methylene linkages as the other N-substituent. The calculated geometries show that intermolecular double H-bonding is the most important factor influencing the formation of stable complexes at the molecular level. When the calculated binding energies were compared with the receptor efficiencies of the corresponding TUn substrates in a quartz crystal microbalance (QCM), a high degree of correlation was found. However, deviations from the correlation trend were found for a few TUn. We explained the deviations with a series of real time diffuse reflectance IR spectra as well as the calculated geometries. The most efficient receptor, determined from the QCM analysis and the IR spectroscopy, was TU13, in which three methylene linkages may provide an extra flexibility in the side chain. However, the calculated binding energy of the TU13 complex was small as a folded geometry of the bare TU13 hindered the double H-bonding. In contrast, the TU13 molecules in the QCM and the IR analyses may exist in unfolded geometries that are ready to form the double H-bonding.

12.
Chem Asian J ; 14(3): 446-453, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30565437

ABSTRACT

The direct synthesis of nanostructured electrode materials on three-dimensional substrates is important for their practical application in electrochemical cells without requiring the use of organic additives or binders. In this study, we present a simple two-step process to synthesize a stable core-shell structured cobalt sulfide/cobalt aluminum hydroxide nanosheet (LDH-S) for pseudocapacitor electrode application. The cobalt aluminum layered double hydroxide (CoAl-LDH) nanoplates were synthesized in basic aqueous solution with a kinetically-controlled thickness. Owing to the facile diffusion of electrolytes through the nanoplates, thin CoAl-LDH nanoplates have higher specific capacitance values than thick nanoplates. The as-grown CoAl-LDH nanoplates were transformed into core-shell structured LDH-S nanosheets by a surface modification process in Na2 S aqueous solution. The chemically robust cobalt sulfide (CoS) shell increased the electrochemical stability compared to the sulfide-free CoAl-LDH electrodes. The LDH-S electrodes exhibited high electrochemical performance in terms of specific capacitance and rate capability with a galvanostatic discharge of 1503 F g-1 at a current density of 2 A g-1 and a specific capacitance of 91 % at 50 A g-1 .

13.
ACS Nano ; 12(7): 6554-6562, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29842775

ABSTRACT

Biomaterials derived via programmable supramolecular protein assembly provide a viable means of constructing precisely defined structures. Here, we present programmed superstructures of AuPt nanoparticles (NPs) on carbon nanotubes (CNTs) that exhibit distinct electrocatalytic activities with respect to the nanoparticle positions via rationally modulated peptide-mediated assembly. De novo designed peptides assemble into six-helix bundles along the CNT axis to form a suprahelical structure. Surface cysteine residues of the peptides create AuPt-specific nucleation site, which allow for precise positioning of NPs onto helical geometries, as confirmed by 3-D reconstruction using electron tomography. The electrocatalytic model system, i.e., AuPt for oxygen reduction, yields electrochemical response signals that reflect the controlled arrangement of NPs in the intended assemblies. Our design approach can be expanded to versatile fields to build sophisticated functional assemblies.


Subject(s)
Gold/chemistry , Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Oxygen/chemistry , Peptides/chemistry , Platinum/chemistry , Amino Acid Sequence , Catalysis , Electricity , Models, Molecular , Nanoparticles/ultrastructure , Nanotubes, Carbon/ultrastructure , Oxidation-Reduction
14.
Nanotechnology ; 29(17): 175702, 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-29438103

ABSTRACT

NiO/NiCo2O4 nanotubes with a diameter of approximately 100 nm are synthesized using Ni and Co precursors via electro-spinning and subsequent calcination processes. The tubular structure is confirmed via transmission electron microscopy imaging, whereas the structures and elemental compositions of the nanotubes are determined using x-ray diffraction, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. N2 adsorption isotherm data reveal that the surface of the nanotubes consists of micropores, thereby resulting in a significantly higher surface area (∼20 m2 g-1) than expected for a flat-surface structure (<15 m2 g-1). Herein, we present a study of the catalytic activity of our novel NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation. The catalytic activity of NiO/NiCo2O4 is superior to Pt below 100 °C for CO oxidation. For acetaldehyde oxidation, the total oxidation activity of NiO/NiCo2O4 for acetaldehyde is comparable with that of Pt. Coexistence of many under-coordinated Co and Ni active sites in our structure is suggested be related to the high catalytic activity. It is suggested that our novel NiO/NiCo2O4 tubular structures with surface microporosity can be of interest for a variety of applications, including the catalytic oxidation of harmful gases.

15.
ACS Sens ; 2(8): 1146-1151, 2017 Aug 25.
Article in English | MEDLINE | ID: mdl-28776366

ABSTRACT

The ability to rapidly detect, identify, and monitor chemical warfare agents (CWAs) is imperative for both military and civilian defense. Since most CWAs and their simulants have an organophosphonate group, which is a hydrogen (H)-bond acceptor, many H-bond donors have been developed to effectively bind to the organophosphonate group. Although thioureas have been actively studied as an organocatalyst, they are relatively less investigated in CWA detection. In addition, there is a lack of studies on the structure-property relationship for gas phase detection. In this study, we synthesized various thioureas of different chemical structures, and tested them for sensing dimethylmethylphosphonate (DMMP), a CWA simulant. Molecular interaction between DMMP and thiourea was measured by 1H NMR titration and supported by density functional theory (DFT) calculations. Strong H-bond donor ability of thiourea may cause self-aggregation, and CH-π interaction can play an important role in the DMMP detection. Gas-phase adsorption of DMMP was also measured using a quartz crystal microbalance (QCM) and analyzed using the simple Langmuir isotherm, showing the importance of structure-induced morphology of thioureas on the surface.

16.
Phys Chem Chem Phys ; 19(32): 21335-21339, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28759070

ABSTRACT

Bare metal clusters have properties that make them interesting for applications in photochemistry and photovoltaics. Long-lived excited states are a prerequisite for such applications, because in them the energy of the photon can be stored. Clusters have a low density of states and long-lived excited states should therefore occur frequently. However, in fact, such states are a rarity, as indicated by time-resolved photoelectron data of mass-selected cluster anions. And there is another puzzling observation: only clusters with narrow peaks in their photoelectron spectra exhibit long-lived excited states. Both findings can be explained if internal conversion, i.e. the conversion of electronic excitation energy into vibrational excitations, is the major relaxation mechanism in clusters. It becomes more likely, if a change of the electronic configuration results in a large geometry change, which is probably the case for most clusters. Only clusters with a weak coupling between geometric and electronic structure may have long-lived excited states and narrow peaks.

17.
Sci Rep ; 7: 40497, 2017 01 16.
Article in English | MEDLINE | ID: mdl-28091561

ABSTRACT

Using a chemical vapor deposition method with regulated sample temperatures under ambient pressure conditions, we were able to fully decorate the internal structure of a mesoporous Al2O3 bead (~1 mm in particle diameter) with iron oxide nanoparticles (with a mean lateral size of less than 1 nm). The iron oxide-decorated Al2O3 showed a high CO oxidation reactivity, even at room temperature. Very little deactivation of the CO oxidation activity was observed with increasing reaction time at ~100 °C. Additionally, this catalyst showed high CO oxidation activity, even after annealing at ~900 °C under atmospheric conditions (i.e., the structure of the catalysts could be maintained under very harsh treatment conditions). We show that our catalysts have potential for application as oxidation catalysts in industrial processes due to the simplicity of their fabrication process as well as the high and stable catalytic performance.

18.
Nanotechnology ; 27(39): 395604, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27560359

ABSTRACT

Reactive surface-exposed anatase TiO2 (a-TiO2) is highly desirable for applications requiring superior photocatalytic activity. In order to obtain a favorable surface, morphology control of the a-TiO2 using capping agents has been widely investigated. Herein, we systematically study the effects of different F sources (HF, TiF4, and NH4F) as the capping agent on the morphology control and photocatalytic activities of a-TiO2 in a hydrothermal process. When either HF or TiF4 was added, large truncated bipyramids formed with the photocatalytically active {001} facet, whereas the NH4F was not effective for facet control, yielding nanospheres similar to the pure a-TiO2. The morphology changes were related to the decomposition behaviors of the F sources in the solvent material: HF and TiF4 decomposed and supplied F(-) ions before a-TiO2 nucleation, which changed the nucleation rate and growth direction, leading to the resultant a-TiO2 morphology. On the other hand, NH4F supplied F(-) ions after a-TiO2 nucleation and could not change the growth behavior. In terms of the photocatalytic effect, the HF- and TiF4-treated a-TiO2 effectively decomposed ∼90% and ∼80% of methylene blue, respectively, in 1 h, while ∼60% was decomposed for the NH4F-treated a-TiO2. Note that pure a-TiO2 photocatalytically decomposed only ∼10% of methylene blue over the same time. These results pave the way to precise control of the facet of TiO2 through using different capping agents.

19.
Phys Chem Chem Phys ; 18(9): 6411-9, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26478260

ABSTRACT

We present a joint theoretical and experimental study of excited state dynamics in pure and hydrated anionic gold clusters Au3(-)[H2O]n (n = 0-2). We employ mixed quantum-classical dynamics combined with femtosecond time-resolved photoelectron spectroscopy in order to investigate the influence of hydration on excited state lifetimes and photo-dissociation dynamics. A gradual decrease of the excited state lifetime with the number of adsorbed water molecules as well as gold cluster fragmentation quenching by two or more water molecules are observed both in experiment and in simulations. Non-radiative relaxation and dissociation in excited states are found to be responsible for the excited state population depletion. Time constants of these two processes strongly depend on the number of water molecules leading to the possibility to modulate excited state dynamics and fragmentation of the anionic cluster by adsorption of water molecules.

20.
Phys Chem Chem Phys ; 17(32): 20873-81, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26214654

ABSTRACT

Thin films of MoO3 were prepared by deposition of size-selected ligand-free Mo clusters under high vacuum conditions and subsequent exposure to air. The growth pattern is highly dependent on the cluster size. At low coverage, small clusters (Mo51) form a continuous monolayer of fused particles. On top of this monolayer, additional clusters survive as individual entities. Medium sized clusters (Mo251 and Mo1253) do not coalesce and form a monolayer of clusters. Close examination using in situ scanning tunneling microscopy reveals a local order of the particles. At higher coverage a new pattern of large 3-dimensional aggregations of clusters (pylons) appears. The pylons are not formed under high vacuum conditions. Their formation is most likely caused by the air exposure. For the largest clusters (Mo3349) studied here, no monolayer is formed. Instead, the clusters are randomly distributed as expected for particles with zero mobility. These results demonstrate the high potential of cluster deposition for the production of new types of nanostructured surfaces, thin films and nanomaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...