Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(46): e2306637, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37740254

ABSTRACT

Film-type shape-configurable speakers with tunable sound directivity are in high demand for wearable electronics. Flexible, thin thermoacoustic (TA) loudspeakers-which are free from bulky vibrating diaphragms-show promise in this regard. However, configuring thin TA loudspeakers into arbitrary shapes is challenging because of their low sound pressure level (SPL) under mechanical deformations and low conformability to other surfaces. By carefully controlling the heat capacity per unit area and thermal effusivity of an MXene conductor and substrates, respectively, it fabricates an ultrathin MXene-based TA loudspeaker exhibiting high SPL output (74.5 dB at 15 kHz) and stable sound performance for 14 days. Loudspeakers with the parylene substrate, whose thickness is less than the thermal penetration depth, generated bidirectional and deformation-independent sound in bent, twisted, cylindrical, and stretched-kirigami configurations. Furthermore, it constructs parabolic and spherical versions of ultrathin, large-area (20 cm × 20 cm) MXene-based TA loudspeakers, which display sound-focusing and 3D omnidirectional-sound-generating attributes, respectively.

2.
ACS Appl Mater Interfaces ; 15(12): 16299-16307, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36926796

ABSTRACT

Stretchable sound-in-displays, which can generate synchronous sound and light directly from the display without a separate speaker, allow immersive audio and visual perception even on curved surfaces. In stretchable sound-in-displays, alternating current electroluminescent (ACEL) devices have been used as light-emitting sources owing to their high brightness and stability. However, stretchable ACEL devices that use low dielectric constant (κ) materials require a high operating voltage for generating light and sound. Herein, we demonstrate a stretchable ACEL loudspeaker with a low operating voltage using stretchable high-κ dielectrics and strain-insensitive electrodes. Our device exhibits 87.7 cd/m2 of luminance and 79.70 dB of sound pressure level at an operating voltage of 120 V and 10 kHz. As the next platform of wearable devices, the suggested ACEL loudspeaker exhibits high-quality synchronous light and sound generation performance even under various types of mechanical deformation, such as finger flexion and wrist bending.

3.
ACS Appl Mater Interfaces ; 12(52): 58403-58411, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33342213

ABSTRACT

Flexible pressure sensors have been widely explored for their versatile applications in electronic skins, wearable healthcare monitoring devices, and robotics. However, fabrication of sensors with characteristics such as high sensitivity, linearity, and simple fabrication process remains a challenge. Therefore, we propose herein a highly flexible and sensitive pressure sensor based on a conductive binary spiky/spherical nanoparticle film that can be fabricated by a simple spray-coating method. The sea-urchin-shaped spiky nanoparticles are based on the core-shell structures of spherical silica nanoparticles decorated with conductive polyaniline spiky shells. The simple spray coating of binary spiky/spherical nanoparticles enables the formation of uniform conductive nanoparticle-based films with hierarchical nano/microstructures. The two differently shaped particles-based films (namely sea-urchin-shaped and spherical) when interlocked face-to-face to form a bilayer structure can be used as a highly sensitive piezoresistive pressure sensor. Our optimized pressure sensor exhibits high sensitivity (17.5 kPa-1) and linear responsivity over a wide pressure range (0.008-120 kPa), owing to the effects of stress concentration and gradual deformation of the hierarchical microporous structures with sharp nanoscale tips. Moreover, the sensor exhibits high durability over 6000 repeated cycles and practical applicability in wearable devices that can be used for healthcare monitoring and subtle airflow detection (1 L/min).

4.
ACS Appl Mater Interfaces ; 12(47): 53184-53192, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33191748

ABSTRACT

Thermoacoustic (TA) loudspeakers have garnered significant attention in recent times as a novel film speaker that utilizes temperature oscillation to vibrate the surrounding air. Conventional film-type TA loudspeakers are known to experience problems when external environments damage their conductive networks, causing them to malfunction. Therefore, introducing self-healing polymers in TA loudspeakers could be an effective way to restore the surface damage of conductive networks. In this study, we present transparent, flexible, and self-healable TA loudspeakers based on silver nanowire (AgNW)-poly(urethane-hindered urea) (PUHU) conductive electrodes. Our self-healable AgNW/PUHU electrodes exhibit significant self-healing for repairing the surface damages that are caused due to the dynamic reconstruction of reversible bulky urea bonds in PUHU. The fabricated self-healable TA loudspeakers generate a sound pressure level of 61 dB at 10 kHz frequency (alternating current (AC) 7 V/direct current (DC) 1 V). In particular, the TA speakers are able to recover the original sound after healing the surface damages of electrodes at 95 °C and 80% relative humidity within 5 min. We believe that the technique proposed in this study provides a robust and powerful platform for the fabrication of transparent and flexible TA loudspeakers with excellent self-healing, which can be applied in flexible and wearable acoustic electronics.

5.
ACS Nano ; 14(6): 7101-7110, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32501001

ABSTRACT

Although ferroelectric composites have been reported to enhance the performance of triboelectric (TE) devices, their performances are still limited owing to randomly dispersed particles. Herein, we introduce high-performance TE sensors (TESs) based on ferroelectric multilayer nanocomposites with alternating poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) and BaTiO3 (BTO) nanoparticle (NP) layers. The multilayers comprising alternating soft/hard layers can induce stress concentration and increase the effective stress-induced polarization and interfacial polarization between organic and inorganic materials, leading to a dielectric constant (17.06) that is higher than those of pure PVDF-TrFE films (13.9) and single PVDF-TrFE/BTO nanocomposites (15.9) at 10 kHz. As a result, the multilayered TESs with alternating BTO NP layers exhibit TE currents increased by 2.3 and 1.5 times compared to pure PVDF-TrFE without BTO NPs and PVDF-TrFE/BTO nanocomposites without multilayer structures, respectively. The multilayered TESs exhibit a high pressure sensitivity of 0.94 V/kPa (48.7 nA/kPa) and output power density of 29.4 µWcm-2, enabling their application in the fabrication of highly sensitive healthcare monitoring devices and high-performance acoustic sensors. The suggested architecture of ferroelectric multilayer nanocomposites provides a robust platform for TE devices and self-powered wearable electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...