Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 14(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38929439

ABSTRACT

This study investigated the effects of rumen-protected L-tryptophan or L-ascorbic acid supplementation on the productivity of lactating Holstein cows during a high-temperature period. Thirty cows were assigned to three dietary groups: control (CON), treatment 1 (TRT 1; rumen-protected L-tryptophan, 20 g/cow/d), and treatment 2 (TRT 2; rumen-protected L-ascorbic acid, 20 g/cow/d). As the high-temperature period progressed, the decrease in milk yield and dry matter intake (DMI) in the TRT 1 and TRT 2 groups was lower than that in the CON group. The total protein level in the plasma of the TRT 1 group was higher than that in the CON group (p < 0.05). Milk melatonin concentration was higher in the TRT 1 group than in the CON and TRT 2 groups (p < 0.05). Thus, the present results indicate that rumen-protected L-tryptophan or L-ascorbic acid has positive effects in preventing declines in DMI and milk yield by reducing heat stress in Holstein cows. In particular, rumen-protected L-tryptophan is considered effective in increasing the melatonin concentration in milk.

2.
Sensors (Basel) ; 21(1)2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33401492

ABSTRACT

The anisotropy and inhomogeneity exhibited by austenitic steel in welds poses a challenge to nondestructive testing employing ultrasonic waves, which is predominantly utilized for the inspection of welds in power plants. In this study, we assess the reliability of phased array ultrasonic testing (PAUT) by analyzing the flaw detection sensitivity of ultrasonic beams in anisotropic welds, based on the inspection conditions. First, we simulated the sectorial scan technique, frequently employed for the inspection of actual welds, while taking into account the ultrasonic wave mode, frequency, and shape and position of a flaw. Subsequently, we analyzed the flaw sensitivity by comparing A-scan signals and S-scan results. The sensitivity analysis results confirmed the detection of all flaws by considering at least two inspection methods based on the shape and position of the flaw. Furthermore, we verified our model by performing an experiment under the same conditions as the simulation and found that the results were in agreement. Hence, we find that the simulation modeling technique proposed in this study can be utilized to develop suitable inspection conditions, according to the flaw characteristics or inspection environment.

3.
ACS Appl Mater Interfaces ; 9(38): 33203-33211, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28884574

ABSTRACT

We demonstrate a simple and efficient one-step procedure for synthesizing a solid state polypyrrole (PPy) thin film for supercapacitor applications using alternating current impedance spectroscopy. By controlling the frequency and amplitude we were able to create unique PPy nano/microstructures with a particular morphology of the loop. Our PPy micro/nanosphere shows extremely high capacitance of 568 F/g, which is close to the theoretical value of 620 F/g and 20-100% higher than that of other reported PPy electrodes. Most of all, this material presents high capacitance and significantly improved electrochemical stability without pulverization of its structure, demonstrating 77% retention of the capacitance value even after 10 000 charge/discharge cycles. These results are a consequence of the larger surface area and adequate porosity generated due to the balance between the nano/micro PPy loops. This created porous structure also allows the favored penetration of electrolyte and high ion mobility within the polymer and prevents the mechanical failure of the physical structure during volume variation associated with the insertion/deinsertion of ions upon cycling.

4.
ACS Nano ; 4(7): 4142-8, 2010 Jul 27.
Article in English | MEDLINE | ID: mdl-20695518

ABSTRACT

Efforts aimed at large-scale integration of nanoelectronic devices that exploit the superior electronic and mechanical properties of single-walled carbon nanotubes (SWCNTs) remain limited by the difficulties associated with manipulation and packaging of individual SWNTs. Alternative approaches based on ultrathin carbon nanotube networks (CNNs) have enjoyed success of late with the realization of several scalable device applications. However, precise control over the network electronic transport is challenging due to (i) an often uncontrollable interplay between network coverage and its detailed topology and (ii) the inherent electrical heterogeneity of the constituent SWNTs. In this article, we use template-assisted fluidic assembly of SWCNT networks to explore the effect of geometric confinement on the network topology. Heterogeneous SWCNT networks dip-coated onto submicrometer wide ultrathin polymer channels become increasingly aligned with decreasing channel width and thickness. Experimental-scale coarse-grained computations of interacting SWCNTs show that the effect is a reflection of a topology that is no longer dependent on the network density, which in turn emerges as a robust knob that can induce semiconductor-to-metallic transitions in the network response. Our study demonstrates the effectiveness of directed assembly on channels with varying degrees of confinement as a simple tool to tailor the conductance of the otherwise heterogeneous network, opening up the possibility of robust large-scale CNN-based devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...