Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; 5(11): e2100781, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34927955

ABSTRACT

Owing to their switchable spontaneous polarization, ferroelectric materials have been applied in various fields, such as information technologies, actuators, and sensors. In the last decade, as the characteristic sizes of both devices and materials have decreased significantly below the nanoscale, the development of appropriate characterization tools became essential. Recently, a technique based on conductive atomic force microscopy (AFM), called AFM-positive-up-negative-down (PUND), is employed for the direct measurement of ferroelectric polarization under the AFM tip. However, the main limitation of AFM-PUND is the low frequency (i.e., on the order of a few hertz) that is used to initiate ferroelectric hysteresis. A significantly higher frequency is required to increase the signal-to-noise ratio and the measurement efficiency. In this study, a novel method based on high-frequency AFM-PUND using continuous waveform and simultaneous signal acquisition of the switching current is presented, in which polarization-voltage hysteresis loops are obtained on a high-polarization BiFeO3 nanocapacitor at frequencies up to 100 kHz. The proposed method is comprehensively evaluated by measuring nanoscale polarization values of the emerging ferroelectric Hf0.5 Zr0.5 O2 under the AFM tip.

2.
ACS Nano ; 14(10): 13727-13738, 2020 10 27.
Article in English | MEDLINE | ID: mdl-32930570

ABSTRACT

Synthetic nanofluidic diodes with highly nonlinear current-voltage characteristics are currently of particular interest because of their potential applications in biosensing, separation, energy harvesting, and nanofluidic electronics. We report the ionic current rectification (ICR) characteristics of a porous anodic aluminum oxide membrane, whose one end of the nanochannels is closed by a barrier oxide layer. The membrane exhibits intriguing pH-dependent ion transport characteristics, which cannot be explained by the conventional surface charge governed ionic transport mechanism. We reveal experimentally and theoretically that the space charge density gradient present across the 40-nm-thick barrier oxide is mainly responsible for the evolution of ICR. Based on our findings, we demonstrate the formation of a single 5-8-nm-sized pore in each hexagonal cell of the barrier oxide. The present work would provide valuable information for the design and fabrication of future ultrathin nanofluidic devices without being limited by the engineering of the nanochannel geometry or surface charge.

SELECTION OF CITATIONS
SEARCH DETAIL
...