Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2977, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582788

ABSTRACT

In blue phosphorescent dopants, the tetradentate platinum(II) complex is a promising material showing high efficiency and stability in devices. However, metal-metal-to-ligand charge transfer (MMLCT) formation leads to low photo-luminescence quantum yields (PLQYs), wide spectra, and intermolecular interaction. To suppress MMLCT, PtON-tb-TTB and PtON-tb-DTB are designed using theoretical simulation by modifying t-butyl in PtON-TBBI. Both materials effectively suppress MMLCT and exhibit high PLQYs of 99% and 78% in 5 wt% doped film, respectively. The PtON-tb-TTB and PtON-tb-DTB devices have maximum external quantum efficiencies of 26.3% and 20.9%, respectively. Additionally, the PtON-tb-DTB device has an extended lifetime of 169.3 h with an initial luminescence of 1200 nit, which is 8.5 times greater than the PtON-TBBI device. Extended lifetime because of suppressed MMLCT and smaller displacement between the lowest triplet and triplet metal-centered states compared to other dopants. The study provides an effective approach to designing platinum(II) complexes for long device lifetimes.

2.
Chem Soc Rev ; 53(9): 4674-4706, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38529583

ABSTRACT

High power conversion efficiency (PCE) and long-term stability are essential prerequisites for the commercialization of polymer solar cells (PSCs). Small-molecule acceptors (SMAs) are core materials that have led to recent, rapid increases in the PCEs of the PSCs. However, a critical limitation of the resulting PSCs is their poor long-term stability. Blend morphology degradation from rapid diffusion of SMAs with low glass transition temperatures (Tgs) is considered the main cause of the poor long-term stability of the PSCs. The recent emergence of oligomerized SMAs (OSMAs), composed of two or more repeating SMA units (i.e., dimerized and trimerized SMAs), has shown great promise in overcoming these challenges. This innovation in material design has enabled OSMA-based PSCs to reach impressive PCEs near 19% and exceptional long-term stability. In this review, we summarize the evolution of OSMAs, including their research background and recent progress in molecular design. In particular, we discuss the mechanisms for high PCE and stability of OSMA-based PSCs and suggest useful design guidelines for high-performance OSMAs. Furthermore, we reflect on the existing hurdles and future directions for OSMA materials towards achieving commercially viable PSCs with high PCEs and operational stabilities.

3.
Macromol Rapid Commun ; 45(1): e2300271, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37400426

ABSTRACT

A poly (3,6-bis(thiophen-2-yl)-2,5-bis(2-decyltetradecyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione-co-(2,3-bis(phenyl)acrylonitrile)) (PDPADPP) copolymer, composed of diketopyrrolopyrrole (DPP) and a cyano (nitrile) group with a vinylene spacer linking two benzene rings, is synthesized via a palladium-catalyzed Suzuki coupling reaction. The electrical performance of PDPADPP in organic field-effect transistors (OFETs) and circuits is investigated. The OFETs based on PDPADPP exhibit typical ambipolar transport characteristics, with the as-cast OFETs demonstrating low field-effect hole and electron mobility values of 0.016 and 0.004 cm2  V-1  s-1 , respectively. However, after thermal annealing at 240 °C, the OFETs exhibit improved transport characteristics with highly balanced ambipolar transport, showing average hole and electron mobility values of 0.065 and 0.116 cm2  V-1  s-1 , respectively. To verify the application of the PDPADPP OFETs in high-voltage logic circuits, compact modeling using the industry-standard small-signal Berkeley short-channel IGFET model (BSIM) is performed, and the logic application characteristics are evaluated. The circuit simulation results demonstrate excellent logic application performance of the PDPADPP-based ambipolar transistor and illustrate that the device annealed at 240 °C exhibits ideal circuit characteristics.


Subject(s)
Acrylonitrile , Computer Simulation , Electricity , Electrons , Nitriles , Polymers
4.
ACS Appl Mater Interfaces ; 15(20): 24670-24680, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37159422

ABSTRACT

To realize efficient, green solvent-processable organic solar cells (OSCs), considerable effort has been expended on the development of conjugated materials with both superior optoelectrical properties and processability. However, molecular design strategies that enhance solubility often reduce crystalline/electrical properties of the materials. In this study, we develop three new guest small-molecule acceptors (SMAs) (Y-4C-4O, Y-6C-4O, and Y-12C-4O) featuring inner side chains consisting of terminal oligo(ethylene glycol) (OEG) groups and alkyl spacers of different lengths. When a host SMA (Y6) and guest SMA (Y-nC-4O) are mixed, favorable interactions between these materials lead to the formation of "alloy-like" composites. The alloy-like SMA composites enable sufficient processing in o-xylene to afford suitable blend-film morphologies. It is also found that the lengths of the alkyl spacers in guest SMAs have a significant impact on the performance of the o-xylene-processed OSCs. The PM6:Y6:Y-4C-4O blend achieves a maximum power conversion efficiency (PCE) of 17.03%, outperforming PM6:Y6:Y-6C-4O (PCE = 15.85%) and PM6:Y6:Y-12C-4O (PCE = 12.12%) OSCs. The high PCE of the PM6:Y6:Y-4C-4O device is mainly attributed to the well-intermixed morphology and superior crystalline/electrical properties, which result from the high compatibility of the Y6:Y-4C-4O composites with PM6. Thus, we demonstrate that an alloy-like SMA composite based on well-designed OEG-incorporated Y-series SMAs can afford green solvent-processable, high-performance OSCs.

5.
Science ; 380(6646): 735-742, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37200416

ABSTRACT

Artificial skin that simultaneously mimics sensory feedback and mechanical properties of natural skin holds substantial promise for next-generation robotic and medical devices. However, achieving such a biomimetic system that can seamlessly integrate with the human body remains a challenge. Through rational design and engineering of material properties, device structures, and system architectures, we realized a monolithic soft prosthetic electronic skin (e-skin). It is capable of multimodal perception, neuromorphic pulse-train signal generation, and closed-loop actuation. With a trilayer, high-permittivity elastomeric dielectric, we achieved a low subthreshold swing comparable to that of polycrystalline silicon transistors, a low operation voltage, low power consumption, and medium-scale circuit integration complexity for stretchable organic devices. Our e-skin mimics the biological sensorimotor loop, whereby a solid-state synaptic transistor elicits stronger actuation when a stimulus of increasing pressure is applied.


Subject(s)
Feedback, Sensory , Robotics , Skin, Artificial , Wearable Electronic Devices , Humans , Electronics , Skin , Transistors, Electronic
6.
Sci Adv ; 9(22): eadf1388, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37256963

ABSTRACT

Boron-based compounds exhibiting a multiresonance thermally activated delayed fluorescence are regarded promising as a narrowband blue emitter desired for efficient displays with wide color gamut. However, their planar nature makes them prone to concentration-induced excimer formation that broadens the emission spectrum, making it hard to increase the emitter concentration without raising CIE y coordinate. To overcome this bottleneck, we here propose o-Tol-ν-DABNA-Me, wherein sterically hindered peripheral phenyl groups are introduced to reduce intermolecular interactions, leading to excimer formation and thus making the pure narrowband emission character far less sensitive to concentration. With this approach, we demonstrate deep-blue OLEDs with y of 0.12 and full width at half maximum of 18 nm, with maximum external quantum efficiency (EQE) of ca. 33%. Adopting a hyperfluorescent architecture, the OLED performance is further enhanced to EQE of 35.4%, with mitigated efficiency roll-off, illustrating the immense potential of the proposed method for energy-efficient deep-blue OLEDs.

7.
Chem Commun (Camb) ; 59(34): 4995-5015, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37021684

ABSTRACT

Replacing environmentally damaging toxic halogenated/aromatic hydrocarbon organic solvents commonly used in solution-processed organic field-effect transistors with more sustainable green solvents has in recent years become a subject of various studies. In the current review, we summarize the properties of solvents used to process organic semiconductors and relate these properties to the toxicities of the solvents. And then, the research efforts to avoid using toxic organic solvents are reviewed, in particular the efforts involving molecular engineering of organic semiconductors achieved by introducing solubilizing side chains or substituents into the backbone and with synthetic strategies to asymmetrically deform the structure of the organic semiconductors and random copolymerization, as well as efforts involving the use of miniemulsion-based nanoparticles to process organic semiconductors.

8.
Sci Rep ; 13(1): 1369, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36697452

ABSTRACT

Near-infrared organic light-emitting diodes (NIR OLEDs) with heavy metals are regularly reported due to the advantages of their various applications in healthcare services, veil authentication, and night vision displays. For commercial applications, it is necessary to look at radiance capacity (RC) instead of radiance because of power consumption. However, recent papers still reported only simple high radiance performance and do not look at device from the point of view of RC. To overcome this hurdle, we designed Ir(III)-based heteroleptic NIR materials with two types of auxiliary ligand. The proposed emitters achieve a highly oriented horizontal dipole ratio (Ir(mCPDTiq)2tmd, complex 1: 80%, Ir(mCPDTiq)2acac, complex 2: 81%) with a short radiative lifetime (1: 386 ns, 2: 323 ns). The device also shows an extremely low turn-on voltage (Von) of 2.2 V and a high RC of 720 mW/sr/m2/V. The results on the Von and RC of the device is demonstrated an outstanding performance among the Ir(III)-based NIR OLEDs with a similar emission peak.

9.
Molecules ; 27(21)2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36364440

ABSTRACT

Herein, we design and characterize 9-heterocyclic ring non-fullerene acceptors (NFAs) with the extended backbone of indacenodithiophene by cyclopenta [2,1-b:3,4-b'] dithiophene (CPDT). The planar conjugated CPDT donor enhances absorption by reducing vibronic transition and charge transport. Developed NFAs with different end groups shows maximum absorption at approximately 790-850 nm in film. Because of the electronegative nature of the end-group, the corresponding acceptors showed deeper LUMO energy levels and red-shifted ultraviolet absorption. We investigate the crystallinity, film morphology, surface energy, and electronic as well as photovoltaic performance. The organic photovoltaic cells using novel NFAs with the halogen end groups fluorine or chlorine demonstrate better charge collection and faster exciton dissociation than photovoltaic cells using NFAs with methyl or lacking a substituent. Photovoltaic devices constructed from m-Me-ITIC with various end groups deliver power conversion efficiencies of 3.6-11.8%.

10.
Adv Mater ; 34(50): e2207416, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36222388

ABSTRACT

Multi-resonance thermally activated delayed fluorescence (MR-TADF) molecules based on boron and nitrogen atoms are emerging as next-generation blue emitters for organic light-emitting diodes (OLEDs) due to their narrow emission spectra and triplet harvesting properties. However, intermolecular aggregation stemming from the planar structure of typical MR-TADF molecules that leads to concentration quenching and broadened spectra limits the utilization of the full potential of MR-TADF emitters. Herein, a deep-blue MR-TADF emitter, pBP-DABNA-Me, is developed to suppress intermolecular interactions effectively. Furthermore, photophysical investigation and theoretical calculations reveal that adding biphenyl moieties to the core body creates dense local triplet states in the vicinity of S1 and T1 energetically, letting the emitter harvest excitons efficiently. OLEDs based on pBP-DABNA-Me show a high external quantum efficiency (EQE) of 23.4% and a pure-blue emission with a Commission Internationale de L'Eclairage (CIE) coordinate of (0.132, 0.092), which are maintained even at a high doping concentration of 100 wt%. Furthermore, by incorporating a conventional TADF sensitizer, deep-blue OLEDs with a CIE value of (0.133, 0.109) and an extremely high EQE of 30.1% are realized. These findings provide insight into design strategies for developing efficient deep-blue MR-TADF emitters with fast triplet upconversion and suppressed self-aggregation.

11.
Macromol Rapid Commun ; 43(19): e2200277, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35611445

ABSTRACT

The development of conjugated polymers with structures that are suitable for efficient molecular doping and charge transport is a key challenge in the construction of high-performance conjugated polymer-based thermoelectric devices. In this study, three novel conjugated polymers based on dithienopyrrole (DTP) are synthesized and their thermoelectric properties are compared. When doped with p-dopant, a donor-acceptor type copolymer, DPP-MeDTP, exhibits higher electrical conductivity and thermoelectric power factor compared to the other donor-donor type copolymers. The high electrical conductivity of DPP-MeDTP compared to the other polymers originates from the high degree of backbone planarity and molecular order, which contributes to its high charge carrier mobility. In addition, the highly crystalline structure of DPP-MeDTP is well maintained upon doping, while the crystalline order of the other polymers decreases significantly upon doping. The findings of this work not only provide insights into the design of DTP-based conjugated polymers for thermoelectric use but also demonstrate the significance of a high degree of molecular order and structural robustness upon doping to achieve high thermoelectric performance.

12.
Adv Mater ; 34(27): e2202574, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35474344

ABSTRACT

Semiconducting polymers with oligoethylene glycol (OEG) sidechains have attracted strong research interest for organic electrochemical transistor (OECT) applications. However, key molecular design rules for high-performance OECTs via efficient mixed electronic/ionic charge transport are still unclear. In this work, new glycolated copolymers (gDPP-TTT and gDPP-TTVTT) with diketopyrrolopyrrole (DPP) acceptor and thiophene (T) and vinylene (V) thiophene-based donor units are synthesized and characterized for accumulation mode OECTs, where a long-alkyl-group (C12 ) attached to the DPP unit acts as a spacer distancing the OEG groups from the polymer backbone. gDPP-TTVTT shows the highest OECT transconductance (61.9 S cm-1 ) and high operational stability, compared to gDPP-TTT and their alkylated counterparts. Surprisingly, gDPP-TTVTT also shows high electronic charge mobility in a field-effect transistor, suggesting efficient ion injection/diffusion without hindering its efficient electronic charge transport. The elongated donor unit (TTVTT) facilitates hole polaron formation to be more localized to the donor unit, leading to faster and easier polaron formation with less impact on polymer structure during OECT operation, as opposed to the TTT unit. This is supported by molecular dynamics simulation. These simultaneously high electronic and ionic charge-transport properties are achieved due to the long-alkyl-group spacer in amphipathic sidechains, providing an important molecular design rule for glycolated copolymers.

13.
Small ; 18(19): e2107574, 2022 May.
Article in English | MEDLINE | ID: mdl-35274463

ABSTRACT

Multi-resonance (MR) thermally activated delayed fluorescent (TADF) emitters are highly attractive due to their superior color purity as well as efficient light-harvesting ability from singlets and triplets. However, boron and nitrogen-based MR-TADF emitters suffer from their strong π-π interaction owing to their rigid flat cores. Herein, a boron-based multi-resonance blue TADF emitter with suppressed intermolecular interaction and isomer formation is developed through a simple synthetic process by introducing meta-xylene and meta-phenyphenyl groups to the core. The MR-TADF emitter, mBP-DABNA-Me, shows a narrowband blue emission with a peak at 467 nm, along with full width at half maximum of 28 nm, and photoluminescence quantum yield of 97%. Notably, highly efficient pure blue organic light-emitting diode (OLED) is realized using mBP-DABNA-Me, showing a maximum external quantum efficiency of 24.3% and a stable blue emission with a Commission Internationale de L'Eclairage coordinate of (0.124, 0.140). The color purity of the OLED is maintained at a high doping concentration of over 20%, attributed to the suppressed intermolecular interaction between the MR emitters.

14.
Adv Mater ; 34(17): e2200526, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35233855

ABSTRACT

When the intensity of the incident light increases, the photocurrents of organic photodiodes (OPDs) exhibit relatively early saturation, due to which OPDs cannot easily detect objects against strong backlights, such as sunlight. In this study, this problem is addressed by introducing a light-intensity-dependent transition of the operation mode, such that the operation mode of the OPD autonomously changes to overcome early photocurrent saturation as the incident light intensity passes the threshold intensity. The photoactive layer is doped with a strategically designed and synthesized molecular switch, 1,2-bis-(2-methyl-5-(4-cyanobiphenyl)-3-thienyl)tetrafluorobenzene (DAB). The proposed OPD exhibits a typical OPD performance with an external quantum efficiency (EQE) of <100% and a photomultiplication behavior with an EQE of >100% under low-intensity and high-intensity light illuminations, respectively, thereby resulting in an extension of the photoresponse linearity to a light intensity of 434 mW cm-2 . This unique and reversible transition of the operation mode can be explained by the unbalanced quantum yield of photocyclization/photocycloreversion of the molecular switch. The details of the operation mechanism are discussed in conjunction with various photophysical analyses. Furthermore, they establish a prototype image sensor with an array of molecular-switch-embedded OPD pixels to demonstrate their extremely high sensitivity against strong light illumination.

15.
Molecules ; 27(3)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35164378

ABSTRACT

We developed new bithiophene extended electron acceptors based on m-alkoxythenyl-substituted IDIC with three different end groups, named as IDT-BT-IC, IDT-BT-IC4F, and IDT-BT-IC4Cl, respectively. The ultraviolet absorption maximum was redshifted and the bandgap was decreased as the strong electron accepting ability of the end group increased. A differential scanning calorimetry thermogram analysis revealed that all the new acceptors have a crystalline character. Using these acceptors and a bulk heterojunction structure using PBDB-T, inverted organic photovoltaic (OPV) devices were fabricated, and their performance was analyzed. Due to the red shift of the electron acceptors, the OPV active layer particularly, which was derived from IDT-BT-IC4F, exhibited increased absorption at long wavelengths over 800 nm. The OPV prepared using IDT-BT-IC exhibited a short-circuit current density (Jsc) of 2.30 mA/cm2, an open-circuit voltage (Voc) of 0.95 V, a fill factor (FF) of 45%, and a photocurrent efficiency (PCE) of 1.00%. Using IDT-BT-IC4F, the corresponding OPV device showed Jsc = 8.31 mA/cm2, Voc = 0.86 V, FF = 47%, and PCE = 3.37%. The IDT-BT-IC4Cl-derived OPV had Jsc = 3.00 mA/cm2, Voc = 0.89 V, FF = 29%, and PCE = 0.76%. When IDT-BT-IC4F was used as the electron acceptor, the highest Jsc and PCE values were achieved. The results show that the low average roughness (0.263 nm) of the active layer improves the extraction of electrons.

16.
Adv Mater ; 34(1): e2100161, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34687094

ABSTRACT

Triplet harvesting is important for the realization of high-efficiency fluorescent organic light-emitting diodes (OLEDs). Triplet-triplet annihilation (TTA) is one triplet-harvesting strategy. However, for blue-emitting anthracene derivatives, the theoretical maximum radiative singlet-exciton ratio generated from the TTA process is known to be 15% in addition to the initially generated singlets of 25%, which is insufficient for high-efficiency fluorescent devices. In this study, nearly 25% of the radiative singlet-exciton ratio is realized by TTA using an anthracene derivative, breaking the theoretical limit. As a result, efficient deep-blue TTA fluorescent devices are developed, exhibiting external quantum efficiencies of 10.2% and 8.6% with Commission Internationale de l'Eclairage color coordinates of (0.134, 0.131) and (0.137, 0.076), respectively. The theoretical model provided herein explains the experimental results considering both the TTA and reverse intersystem crossing to a singlet state from higher triplet states formed by the TTA, clearly demonstrating that the radiative singlet ratio generated from TTA can reach 37.5% (total radiative singlet-exciton ratio: 62.5%), well above 15% (total 40%), despite the molecule having S1 , T2  < 2T1  < Q1 energy levels, which will lead to the development of high-efficiency fluorescent OLEDs with external quantum efficiencies exceeding 28% if the outcoupling efficiency is 45%.

17.
ACS Nano ; 15(12): 19970-19980, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34797652

ABSTRACT

Small-molecule acceptor (SMA)-based organic solar cells (OSCs) have achieved high power conversion efficiencies (PCEs), while their long-term stabilities remain to be improved to meet the requirements for real applications. Herein, we demonstrate the use of donor-acceptor alternating copolymer-type compatibilizers (DACCs) in high-performance SMA-based OSCs, enhancing their PCE, thermal stability, and mechanical robustness simultaneously. Detailed experimental and computational studies reveal that the addition of DACCs to polymer donor (PD)-SMA blends effectively reduces PD-SMA interfacial tensions and stabilizes the interfaces, preventing the coalescence of the phase-separated domains. As a result, desired morphologies with exceptional thermal stability and mechanical robustness are obtained for the PD-SMA blends. The addition of 20 wt % DACCs affords OSCs with a PCE of 17.1% and a cohesive fracture energy (Gc) of 0.89 J m-2, higher than those (PCE = 13.6% and Gc = 0.35 J m-2) for the control OSCs without DACCs. Moreover, at an elevated temperature of 120 °C, the OSCs with 20 wt % DACC exhibit excellent morphological stability, retaining over 95% of the initial PCE after 300 h. In contrast, the control OSCs without the DACC rapidly degraded to below 60% of the initial PCE after 144 h.

18.
Nat Commun ; 12(1): 5842, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34615870

ABSTRACT

Recent advancements in the field of electronics have paved the way to the development of new applications, such as tattoo electronics, where the employment of ultraconformable devices is required, typically achievable with a significant reduction in their total thickness. Organic materials can be considered enablers, owing to the possibility of depositing films with thicknesses at the nanometric scale, even from solution. However, available processes do not allow obtaining devices with thicknesses below hundreds of nanometres, thus setting a limit. Here, we show an all-organic field effect transistor that is less than 150 nm thick and that is fabricated through a fully solution-based approach. Such unprecedented thickness permits the device to conformally adhere onto nonplanar surfaces, such as human skin, and to be bent to a radius lower than 1 µm, thereby overcoming another limitation for field-effect transistors and representing a fundamental advancement in the field of ultrathin and tattoo electronics.

19.
Adv Sci (Weinh) ; 8(14): 2100332, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34306977

ABSTRACT

The advent of special types of polymeric semiconductors, known as "polymer blends," presents new opportunities for the development of next-generation electronics based on these semiconductors' versatile functionalities in device applications. Although these polymer blends contain semiconducting polymers (SPs) mixed with a considerably high content of insulating polymers, few of these blends unexpectedly yield much higher charge carrier mobilities than those of pure SPs. However, the origin of such an enhancement has remained unclear owing to a lack of cases exhibiting definite improvements in charge carrier mobility, and the limited knowledge concerning the underlying mechanism thereof. In this study, the morphological changes and internal nanostructures of polymer blends based on various SP types with different intermolecular interactions in an insulating polystyrene matrix are investigated. Through this investigation, the physical confinement of donor-acceptor type SP chains in a continuous nanoscale network structure surrounded by polystyrenes is shown to induce structural ordering with more straight edge-on stacked SP chains. Hereby, high-performance and transparent organic field-effect transistors with a hole mobility of ≈5.4 cm2 V-1 s-1 and an average transmittance exceeding 72% in the visible range are achieved.

20.
ACS Nano ; 15(4): 7700-7712, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33769786

ABSTRACT

Non-fullerene acceptors (NFAs) for organic solar cells (OSCs) have significantly developed over the past five years with continuous improvements in efficiency now over 18%. However, a key challenge still remains in order to fully realize their commercialization potential: the need to extend device lifetime and to control degradation mechanisms. Herein, we investigate the effect of two different molecular engineering routes on the widely utilized ITIC NFA, to tune its optoelectronic properties and interactions with the donor polymer in photoactive blends. Heavier selenium (Se) atoms substitute sulfur (S) atoms in the NFA core in either outer or inner positions, and methyl chains are attached to the end groups. By investigating the effects of these structural modifications on the long-term operational stability of bulk-heterojunction OSC devices, we identify outer selenation as a powerful strategy to significantly increase device lifetime compared to ITIC. Combining outer selenation and methylation results in an impressive 95% of the initial OSC efficiency being retained after 450 h under operating conditions, with an exceptionally long projected half-lifetime of 5600 h compared to 400 h for ITIC. We find that the heavier and larger Se atoms at outer-core positions rigidify the molecular structure to form highly crystalline films with low conformational energetic disorder. It further enhances charge delocalization over the molecule, promoting strong intermolecular interactions among acceptor molecules. Upon methylation, this strong intermolecular interaction stabilizes acceptor domains in blends to be resilient to light-induced morphological changes, thereby leading to superior device stability. Our results highlight the crucial role of NFA molecular structure for OSC operational stability and provide important NFA design rules via heteroatom position and end-group control.

SELECTION OF CITATIONS
SEARCH DETAIL
...