Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 45(8): 6216-6245, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37623211

ABSTRACT

Type 2 diabetes (T2D) is characterized by pancreatic beta-cell dysfunction, increased cell death and loss of beta-cell mass despite chronic treatment. Consequently, there has been growing interest in developing beta cell-centered therapies. Beta-cell regeneration is mediated by augmented beta-cell proliferation, transdifferentiation of other islet cell types to functional beta-like cells or the reprograming of beta-cell progenitors into fully differentiated beta cells. This mediation is orchestrated by beta-cell differentiation transcription factors and the regulation of the cell cycle machinery. This review investigates the beta-cell regenerative potential of antidiabetic plant extracts and phytochemicals. Various preclinical studies, including in vitro, in vivo and ex vivo studies, are highlighted. Further, the potential regenerative mechanisms and the intra and extracellular mediators that are of significance are discussed. Also, the potential of phytochemicals to translate into regenerative therapies for T2D patients is highlighted, and some suggestions regarding future perspectives are made.

2.
Article in English | MEDLINE | ID: mdl-35409465

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a spectrum of hepatic metabolic perturbations ranging from simple steatosis to steatohepatitis, cirrhosis and hepatocellular carcinoma. Currently, lifestyle modifications to reduce weight gain are considered the most effective means of preventing and treating the disease. The aim of the present study was to determine the therapeutic benefit of Sclerocarya birrea (Marula leaf extract, MLE) on hepatic steatosis. Obese db/db mice were randomly stratified into the obese control, metformin (MET) or MLE-treated groups. Mice were treated daily for 29 days, at which point all mice were euthanized and liver samples were collected. Hematoxylin and eosin staining was used for histological assessment of the liver sections, while qRT-PCR and Western blot were used to determine hepatic mRNA and protein expression, respectively. Thereafter, the association between methylenetetrahydrofolate reductase (Mthfr a key enzyme in one-carbon metabolism and DNA-methylation-induced regulation of gene transcription) and lipogenic genes was evaluated using Pearson's correlation coefficient. Mice treated with MLE presented with significantly lower body and liver weights as compared with the obese control and MET-treated mice (p ≤ 0.05). Further, MLE treatment significantly inhibited hepatic steatosis as compared with the obese control and MET-treated mice (p ≤ 0.05). The reduced lipid accumulation was associated with low expression of fatty acid synthase (Cpt1; p ≤ 0.05) and an upregulation of the fatty acid oxidation gene, carnitine palmitoyltransferase (Cpt1; p ≤ 0.01), as compared with the obese control mice. Interestingly, MLE treatment improved the correlation between Mthfr and Cpt1 mRNA expression (r = 0.72, p ≤ 0.01). Taken together, the results suggest that Marula leaf extracts may inhibit hepatic steatosis by influencing the association between Mthfr and genes involved in hepatic lipid metabolism. Further studies are warranted to assess DNA methylation changes in lipid metabolism genes.


Subject(s)
Anacardiaceae , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Lipid Metabolism , Liver , Mice , Mice, Inbred C57BL , Mice, Obese , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...