Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 574: 1484-1491, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27650647

ABSTRACT

Indium is an increasingly important metal in semiconductors and electronics and has uses in important energy technologies such as photovoltaic cells and light-emitting diodes (LEDs). One significant flux of indium to the environment is from lead, zinc, copper, and tin mining and smelting, but little is known about its aqueous behavior after it is mobilized. In this study, we use Mineral Creek, a headwater stream in southwestern Colorado severely affected by heavy metal contamination as a result of acid mine drainage, as a natural laboratory to study the aqueous behavior of indium. At the existing pH of ~3, indium concentrations are 6-29µg/L (10,000× those found in natural rivers), and are completely filterable through a 0.45µm filter. During a pH modification experiment, the pH of the system was raised to >8, and >99% of the indium became associated with the suspended solid phase (i.e. does not pass through a 0.45µm filter). To determine the mechanism of removal of indium from the filterable and likely primarily dissolved phase, we conducted laboratory experiments to determine an upper bound for a sorption constant to iron oxides, and used this, along with other published thermodynamic constants, to model the partitioning of indium in Mineral Creek. Modeling results suggest that the removal of indium from the filterable phase is consistent with precipitation of indium hydroxide from a dissolved phase. This work demonstrates that nonferrous mining processes can be a significant source of indium to the environment, and provides critical information about the aqueous behavior of indium.

2.
Environ Sci Technol ; 50(23): 12641-12649, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27934261

ABSTRACT

Low-flow synoptic sampling campaigns are often used as the primary tool to characterize watersheds affected by mining. Although such campaigns are an invaluable part of site characterization, investigations which focus solely on low-flow conditions may yield misleading results. The objective of this paper is to demonstrate this point and elucidate the mechanisms responsible for the release of metals during rainfall runoff. This objective is addressed using data from diel and synoptic sampling campaigns conducted over a two-day period. Low-flow synoptic sampling results indicate that concentrations of most constituents meet aquatic standards. This finding is in contrast to findings from a diel sampling campaign that captured dramatic increases in concentrations during rainfall runoff. Concentrations during the rising limb of the hydrograph were 2-23 times concentrations observed during synoptic sampling (most increases were >10-fold), remaining elevated during the receding limb of the hydrograph to produce a clockwise hysteresis loop. Hydrologic mechanisms responsible for the release of metals include increased transport due to resuspension of streambed solids, erosion of alluvial tailings, and overland flow. Rainfall also elevated the alluvial groundwater table and increased infiltration through the vadose zone, likely resulting in dissolution from alluvial tailings that were dry prior to the event.


Subject(s)
Rivers , Water Quality , Environmental Monitoring , Groundwater , Metals , Montana , Water Pollutants, Chemical
3.
Ground Water ; 51(4): 511-24, 2013.
Article in English | MEDLINE | ID: mdl-23758706

ABSTRACT

Gaining streams can provide an integrated signal of relatively large groundwater capture areas. In contrast to the point-specific nature of monitoring wells, gaining streams coalesce multiple flow paths. Impacts on groundwater quality from unconventional gas development may be evaluated at the watershed scale by the sampling of dissolved methane (CH4 ) along such streams. This paper describes a method for using stream CH4 concentrations, along with measurements of groundwater inflow and gas transfer velocity interpreted by 1-D stream transport modeling, to determine groundwater methane fluxes. While dissolved ionic tracers remain in the stream for long distances, the persistence of methane is not well documented. To test this method and evaluate CH4 persistence in a stream, a combined bromide (Br) and CH4 tracer injection was conducted on Nine-Mile Creek, a gaining stream in a gas development area in central Utah. A 35% gain in streamflow was determined from dilution of the Br tracer. The injected CH4 resulted in a fivefold increase in stream CH4 immediately below the injection site. CH4 and δ(13) CCH4 sampling showed it was not immediately lost to the atmosphere, but remained in the stream for more than 2000 m. A 1-D stream transport model simulating the decline in CH4 yielded an apparent gas transfer velocity of 4.5 m/d, describing the rate of loss to the atmosphere (possibly including some microbial consumption). The transport model was then calibrated to background stream CH4 in Nine-Mile Creek (prior to CH4 injection) in order to evaluate groundwater CH4 contributions. The total estimated CH4 load discharging to the stream along the study reach was 190 g/d, although using geochemical fingerprinting to determine its source was beyond the scope of the current study. This demonstrates the utility of stream-gas sampling as a reconnaissance tool for evaluating both natural and anthropogenic CH4 leakage from gas reservoirs into groundwater and surface water.


Subject(s)
Environmental Monitoring/methods , Extraction and Processing Industry , Groundwater/analysis , Methane/analysis , Rivers/chemistry , Water Pollution, Chemical/analysis , Kinetics , Models, Theoretical , Natural Gas , Oil and Gas Fields , Utah
4.
Environ Sci Technol ; 46(1): 340-7, 2012 Jan 03.
Article in English | MEDLINE | ID: mdl-22074087

ABSTRACT

A post audit for a reactive transport model used to evaluate acid mine drainage treatment systems is presented herein. The post audit is based on a paired synoptic approach in which hydrogeochemical data are collected at low (existing conditions) and elevated (following treatment) pH. Data obtained under existing, low-pH conditions are used for calibration, and the resultant model is used to predict metal concentrations observed following treatment. Predictions for Al, As, Fe, H(+), and Pb accurately reproduce the observed reduction in dissolved concentrations afforded by the treatment system, and the information provided in regard to standard attainment is also accurate (predictions correctly indicate attainment or nonattainment of water quality standards for 19 of 25 cases). Errors associated with Cd, Cu, and Zn are attributed to misspecification of sorbent mass (precipitated Fe). In addition to these specific results, the post audit provides insight in regard to calibration and sensitivity analysis that is contrary to conventional wisdom. Steps taken during the calibration process to improve simulations of As sorption were ultimately detrimental to the predictive results, for example, and the sensitivity analysis failed to bracket observed metal concentrations.


Subject(s)
Acids/chemistry , Environmental Restoration and Remediation/methods , Mining , Models, Chemical , Rivers/chemistry , Waste Disposal, Fluid , Computer Simulation , Minerals/chemistry , Uncertainty , Water Quality/standards
5.
Arch Environ Contam Toxicol ; 52(3): 397-409, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17219028

ABSTRACT

To characterize the partitioning of metals in a stream ecosystem, concentrations of trace metals including As, Cd, Cu, Pb, and Zn were measured in water, colloids, sediment, biofilm (also referred to as aufwuchs), macroinvertebrates, and fish collected from the Boulder River watershed, Montana. Median concentrations of Cd, Cu, and Zn in water throughout the watershed exceeded the U.S. EPA acute and chronic criteria for protection of aquatic life. Concentrations of As, Cd, Cu, Pb, and Zn in sediment were sufficient in the tributaries to cause invertebrate toxicity. The concentrations of As, Cu, Cd, Pb, and Zn in invertebrates from lower Cataract Creek (63, 339, 59, 34, and 2,410 microg/g dry wt, respectively) were greater than the concentrations in invertebrates from the Clark Fork River watershed, Montana (19, 174, 2.3, 15, and 648 microg/g, respectively), that were associated with reduced survival, growth, and health of cutthroat trout fed diets composed of those invertebrates. Colloids and biofilm seem to play a critical role in the pathway of metals into the food chain and concentrations of As, Cu, Pb, and Zn in these two components are significantly correlated. We suggest that transfer of metals associated with Fe colloids to biological components of biofilm is an important pathway where metals associated with abiotic components are first available to biotic components. The significant correlations suggest that Cd, Cu, and Zn may move independently to biota (biofilm, invertebrates, or fish tissues) from water and sediment. The possibility exists that Cd, Cu, and Zn concentrations increase in fish tissues as a result of direct contact with water and sediment and indirect exposure through the food chain. However, uptake through the food chain to fish may be more important for As. Although As concentrations in colloids and biofilm were significantly correlated with As water concentrations, As concentrations in fish tissues were not correlated with water. The pathway for Pb into biological components seems to begin with sediment because concentrations of Pb in water were not significantly correlated with any other component and because concentrations of Pb in the water were often below detection limits.


Subject(s)
Arsenic/analysis , Fishes/metabolism , Invertebrates/metabolism , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Animals , Arsenic/metabolism , Biofilms , Colloids/analysis , Environmental Monitoring , Geologic Sediments/analysis , Gills/metabolism , Liver/metabolism , Metals, Heavy/metabolism , Montana , Rivers/chemistry , Water Pollutants, Chemical/metabolism , Water Supply
6.
Environ Sci Technol ; 36(5): 1093-101, 2002 Mar 01.
Article in English | MEDLINE | ID: mdl-11917996

ABSTRACT

A reactive transport model based on one-dimensional transport and equilibrium chemistry is applied to synoptic data from an acid mine drainage stream. Model inputs include streamflow estimates based on tracer dilution, inflow chemistry based on synoptic sampling, and equilibrium constants describing acid/base, complexation, precipitation/dissolution, and sorption reactions. The dominant features of observed spatial profiles in pH and metal concentration are reproduced along the 3.5-km study reach by simulating the precipitation of Fe(III) and Al solid phases and the sorption of Cu, As, and Pb onto freshly precipitated iron(III) oxides. Given this quantitative description of existing conditions, additional simulations are conducted to estimate the streamwater quality that could result from two hypothetical remediation plans. Both remediation plans involve the addition of CaCO3 to raise the pH of a small, acidic inflow from approximately 2.4 to approximately 7.0. This pH increase results in a reduced metal load that is routed downstream by the reactive transport model, thereby providing an estimate of post-remediation water quality. The first remediation plan assumes a closed system wherein inflow Fe(II) is not oxidized by the treatment system; under the second remediation plan, an open system is assumed, and Fe(II) is oxidized within the treatment system. Both plans increase instream pH and substantially reduce total and dissolved concentrations of Al, As, Cu, and Fe(II+III) at the terminus of the study reach. Dissolved Pb concentrations are reduced by approximately 18% under the first remediation plan due to sorption onto iron(III) oxides within the treatment system and stream channel. In contrast, iron(III) oxides are limiting under the second remediation plan, and removal of dissolved Pb occurs primarily within the treatment system. This limitation results in an increase in dissolved Pb concentrations over existing conditions as additional downstream sources of Pb are not attenuated by sorption.


Subject(s)
Iron/chemistry , Mining , Models, Chemical , Waste Disposal, Fluid , Water Pollution/prevention & control , Environmental Monitoring , Hydrogen-Ion Concentration , Metals, Heavy , Oxidation-Reduction , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...