Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Small ; : e2311016, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38461530

ABSTRACT

The biosynthesis of Pd nanoparticles supported on microorganisms (bio-Pd) is achieved via the enzymatic reduction of Pd(II) to Pd(0) under ambient conditions using inexpensive buffers and electron donors, like organic acids or hydrogen. Sustainable bio-Pd catalysts are effective for C-C coupling and hydrogenation reactions, but their industrial application is limited by challenges in controlling nanoparticle properties. Here, using the metal-reducing bacterium Geobacter sulfurreducens, it is demonstrated that synthesizing bio-Pd under different Pd loadings and utilizing different electron donors (acetate, formate, hydrogen, no e- donor) influences key properties such as nanoparticle size, Pd(II):Pd(0) ratio, and cellular location. Controlling nanoparticle size and location controls the activity of bio-Pd for the reduction of 4-nitrophenol, whereas high Pd loading on cells synthesizes bio-Pd with high activity, comparable to commercial Pd/C, for Suzuki-Miyaura coupling reactions. Additionally, the study demonstrates the novel synthesis of microbially-supported ≈2 nm PdO nanoparticles due to the hydrolysis of biosorbed Pd(II) in bicarbonate buffer. Bio-PdO nanoparticles show superior activity in 4-nitrophenol reduction compared to commercial Pd/C catalysts. Overall, controlling biosynthesis parameters, such as electron donor, metal loading, and solution chemistry, enables tailoring of bio-Pd physicochemical and catalytic properties.

2.
Environ Microbiol ; 25(12): 3139-3150, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37697680

ABSTRACT

Microorganisms can facilitate the reduction of Cu2+ , altering its speciation and mobility in environmental systems and producing Cu-based nanoparticles with useful catalytic properties. However, only a few model organisms have been studied in relation to Cu2+ bioreduction and little work has been carried out on microbes from Cu-contaminated environments. This study aimed to enrich for Cu-resistant microbes from a Cu-contaminated soil and explore their potential to facilitate Cu2+ reduction and biomineralisation from solution. We show that an enrichment grown in a Cu-amended medium, dominated by species closely related to Geothrix fermentans, Azospira restricta and Cellulomonas oligotrophica, can reduce Cu2+ with subsequent precipitation of Cu nanoparticles. Characterisation of the nanoparticles with (scanning) transmission electron microscopy, energy-dispersive x-ray spectroscopy and electron energy loss spectroscopy supports the presence of both metallic Cu(0) and S-rich Cu(I) nanoparticles. This study provides new insights into the diversity of microorganisms capable of facilitating copper reduction and highlights the potential for the formation of distinct nanoparticle phases resulting from bioreduction or biomineralisation reactions. The implications of these findings for the biogeochemical cycling of copper and the potential biotechnological synthesis of commercially useful copper nanoparticles are discussed.


Subject(s)
Copper , Nanoparticles , Nanoparticles/chemistry
3.
Environ Sci Technol ; 57(40): 15243-15254, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37748105

ABSTRACT

Stable mercury (Hg) isotope ratios are an emerging tracer for biogeochemical transformations in environmental systems, but their application requires knowledge of isotopic enrichment factors for individual processes. We investigated Hg isotope fractionation during dark, abiotic reduction of Hg(II) by dissolved iron(Fe)(II), magnetite, and Fe(II) sorbed to boehmite or goethite by analyzing both the reactants and products of laboratory experiments. For homogeneous reduction of Hg(II) by dissolved Fe(II) in continuously purged reactors, the results followed a Rayleigh distillation model with enrichment factors of -2.20 ± 0.16‰ (ε202Hg) and 0.21 ± 0.02‰ (E199Hg). In closed system experiments, allowing reequilibration, the initial kinetic fractionation was overprinted by isotope exchange and followed a linear equilibrium model with -2.44 ± 0.17‰ (ε202Hg) and 0.34 ± 0.02‰ (E199Hg). Heterogeneous Hg(II) reduction by magnetite caused a smaller isotopic fractionation (-1.38 ± 0.07 and 0.13 ± 0.01‰), whereas the extent of isotopic fractionation of the sorbed Fe(II) experiments was similar to the kinetic homogeneous case. Small mass-independent fractionation of even-mass Hg isotopes with 0.02 ± 0.003‰ (E200Hg) and ≈ -0.02 ± 0.01‰ (E204Hg) was consistent with theoretical predictions for the nuclear volume effect. This study contributes significantly to the database of Hg isotope enrichment factors for specific processes. Our findings show that Hg(II) reduction by dissolved Fe(II) in open systems results in a kinetic MDF with a larger ε compared to other abiotic reduction pathways, and combining MDF with the observed MIF allows the distinction from photochemical or microbial Hg(II) reduction pathways.

4.
Nanoscale Adv ; 4(3): 654-679, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35224444

ABSTRACT

Palladium metal nanoparticles are excellent catalysts used industrially for reactions such as hydrogenation and Heck and Suzuki C-C coupling reactions. However, the global demand for Pd far exceeds global supply, therefore the sustainable use and recycling of Pd is vital. Conventional chemical synthesis routes of Pd metal nanoparticles do not meet sustainability targets due to the use of toxic chemicals, such as organic solvents and capping agents. Microbes are capable of bioreducing soluble high oxidation state metal ions to form metal nanoparticles at ambient temperature and pressure, without the need for toxic chemicals. Microbes can also reduce metal from waste solutions, revalorising these waste streams and allowing the reuse of precious metals. Pd nanoparticles supported on microbial cells (bio-Pd) can catalyse a wide array of reactions, even outperforming commercial heterogeneous Pd catalysts in several studies. However, to be considered a viable commercial option, the intrinsic activity and selectivity of bio-Pd must be enhanced. Many types of microorganisms can produce bio-Pd, although most studies so far have been performed using bacteria, with metal reduction mediated by hydrogenase or formate dehydrogenase enzymes. Dissimilatory metal-reducing bacteria (DMRB) possess additional enzymes adapted for extracellular electron transport that potentially offer greater control over the properties of the nanoparticles produced. A recent and important addition to the field are bio-bimetallic nanoparticles, which significantly enhance the catalytic properties of bio-Pd. In addition, systems biology can integrate bio-Pd into biocatalytic processes, and processing techniques may enhance the catalytic properties further, such as incorporating additional functional nanomaterials. This review aims to highlight aspects of enzymatic metal reduction processes that can be bioengineered to control the size, shape, and cellular location of bio-Pd in order to optimise its catalytic properties.

5.
Appl Environ Microbiol ; 87(22): e0139021, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34495739

ABSTRACT

The exploitation of microorganisms for the fabrication of nanoparticles (NPs) has garnered considerable research interest globally. The microbiological transformation of metals and metal salts into respective NPs can be achieved under environmentally benign conditions, offering a more sustainable alternative to chemical synthesis methods. Species of the metal-reducing bacterial genus Shewanella are able to couple the oxidation of various electron donors, including lactate, pyruvate, and hydrogen, to the reduction of a wide range of metal species, resulting in biomineralization of a multitude of metal NPs. Single-metal-based NPs as well as composite materials with properties equivalent or even superior to physically and chemically produced NPs have been synthesized by a number of Shewanella species. A mechanistic understanding of electron transfer-mediated bioreduction of metals into respective NPs by Shewanella is crucial in maximizing NP yields and directing the synthesis to produce fine-tuned NPs with tailored properties. In addition, thorough investigations into the influence of process parameters controlling the biosynthesis is another focal point for optimizing the process of NP generation. Synthesis of metal-based NPs using Shewanella species offers a low-cost, eco-friendly alternative to current physiochemical methods. This article aims to shed light on the contribution of Shewanella as a model organism in the biosynthesis of a variety of NPs and critically reviews the current state of knowledge on factors controlling their synthesis, characterization, potential applications in different sectors, and future prospects.


Subject(s)
Metal Nanoparticles , Shewanella , Industrial Microbiology , Shewanella/metabolism
6.
Microb Biotechnol ; 14(6): 2435-2447, 2021 11.
Article in English | MEDLINE | ID: mdl-33720526

ABSTRACT

Bimetallic nanoparticle catalysts have attracted considerable attention due to their unique chemical and physical properties. The ability of metal-reducing bacteria to produce highly catalytically active monometallic nanoparticles is well known; however, the properties and catalytic activity of bimetallic nanoparticles synthesized with these organisms is not well understood. Here, we report the one-pot biosynthesis of Pd/Ag (bio-Pd/Ag) and Pd/Au (bio-Pd/Au) nanoparticles using the metal-reducing bacterium, Shewanella oneidensis, under mild conditions. Energy dispersive X-ray analyses performed using scanning transmission electron microscopy (STEM) revealed the presence of both metals (Pd/Ag or Pd/Au) in the biosynthesized nanoparticles. X-ray absorption near-edge spectroscopy (XANES) suggested a significant contribution from Pd(0) and Pd(II) in both bio-Pd/Ag and bio-Pd/Au, with Ag and Au existing predominately as their metallic forms. Extended X-ray absorption fine-structure spectroscopy (EXAFS) supported the presence of multiple Pd species in bio-Pd/Ag and bio-Pd/Au, as inferred from Pd-Pd, Pd-O and Pd-S shells. Both bio-Pd/Ag and bio-Pd/Au demonstrated greatly enhanced catalytic activity towards Suzuki-Miyaura cross-coupling compared to a monometallic Pd catalyst, with bio-Pd/Ag significantly outperforming the others. The catalysts were very versatile, tolerating a wide range of substituents. This work demonstrates a green synthesis method for novel bimetallic nanoparticles that display significantly enhanced catalytic activity compared to their monometallic counterparts.


Subject(s)
Gold , Metal Nanoparticles , Catalysis
7.
Appl Environ Microbiol ; 86(18)2020 09 01.
Article in English | MEDLINE | ID: mdl-32680873

ABSTRACT

Biomineralization of Cu has been shown to control contaminant dynamics and transport in soils. However, very little is known about the role that subsurface microorganisms may play in the biogeochemical cycling of Cu. In this study, we investigate the bioreduction of Cu(II) by the subsurface metal-reducing bacterium Geobacter sulfurreducens Rapid removal of Cu from solution was observed in cell suspensions of G. sulfurreducens when Cu(II) was supplied, while transmission electron microscopy (TEM) analyses showed the formation of electron-dense nanoparticles associated with the cell surface. Energy-dispersive X-ray spectroscopy (EDX) point analysis and EDX spectrum image maps revealed that the nanoparticles are rich in both Cu and S. This finding was confirmed by X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses, which identified the nanoparticles as Cu2S. Biomineralization of CuxS nanoparticles in soils has been reported to enhance the colloidal transport of a number of contaminants, including Pb, Cd, and Hg. However, formation of these CuxS nanoparticles has only been observed under sulfate-reducing conditions and could not be repeated using isolates of implicated organisms. As G. sulfurreducens is unable to respire sulfate, and no reducible sulfur was supplied to the cells, these data suggest a novel mechanism for the biomineralization of Cu2S under anoxic conditions. The implications of these findings for the biogeochemical cycling of Cu and other metals as well as the green production of Cu catalysts are discussed.IMPORTANCE Dissimilatory metal-reducing bacteria are ubiquitous in soils and aquifers and are known to utilize a wide range of metals as terminal electron acceptors. These transformations play an important role in the biogeochemical cycling of metals in pristine and contaminated environments and can be harnessed for bioremediation and metal bioprocessing purposes. However, relatively little is known about their interactions with Cu. As a trace element that becomes toxic in excess, Cu can adversely affect soil biota and fertility. In addition, biomineralization of Cu nanoparticles has been reported to enhance the mobilization of other toxic metals. Here, we demonstrate that when supplied with acetate under anoxic conditions, the model metal-reducing bacterium Geobacter sulfurreducens can transform soluble Cu(II) to Cu2S nanoparticles. This study provides new insights into Cu biomineralization by microorganisms and suggests that contaminant mobilization enhanced by Cu biomineralization could be facilitated by Geobacter species and related organisms.


Subject(s)
Biomineralization , Copper/metabolism , Geobacter/metabolism , Metal Nanoparticles , Sulfides/metabolism
8.
Analyst ; 145(4): 1236-1249, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-31776524

ABSTRACT

The Gram-negative bacterial pathogen Campylobacter jejuni is a major cause of foodborne gastroenteritis worldwide. Rapid detection and identification of C. jejuni informs timely prescription of appropriate therapeutics and epidemiological investigations. Here, for the first time, we report the applicability of Raman spectroscopy, surface-enhanced Raman scattering (SERS) and matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF-MS) combined with chemometrics, for rapid differentiation and characterisation of mutants of a single isogenic C. jejuni strain that disrupt the production of prominent surface features (capsule, flagella and glycoproteins) of the bacterium. Multivariate analysis of the spectral data obtained from these different physicochemical tools revealed distinctive biochemical differences which consistently discriminated between these mutants. In order to generate biochemical and phenotypic information from different locations in the cell-cell wall versus cytoplasm - we developed two different in situ methods for silver nanoparticle (AgNP) production, and compared this with simple mixing of bacteria with pre-synthesised AgNPs. This SERS trilogy (simple mixing with premade AgNPs and two in situ AgNP production methods) presents an integrated platform with potential for rapid, accurate and confirmatory detection of pathogenic bacteria based on cell envelope or intracellular molecular dynamics. Our spectral findings demonstrate that Raman, SERS and MALDI-TOF-MS are powerful metabolic fingerprinting techniques capable of discriminating clinically relevant cell wall mutants of a single isogenic bacterial strain.


Subject(s)
Campylobacter jejuni/cytology , Campylobacter jejuni/genetics , Cell Wall/genetics , Informatics , Mutation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrum Analysis, Raman , Bacterial Proteins/metabolism , Flagella/genetics , Glycosylation , Metal Nanoparticles/chemistry , Silver/chemistry , Time Factors
9.
J Hazard Mater ; 371: 18-26, 2019 06 05.
Article in English | MEDLINE | ID: mdl-30844646

ABSTRACT

Copper recovery from distillery effluent was studied in a scalable bioelectro-chemical system with approx. 6.8 L total volume. Two control strategies based on the control of power with maximum power point tracking (MPPT) and the application of 0.5 V using an external power supply were used to investigate the resultant modified electroplating characteristics. The reactor system was constructed from two electrically separated, but hydraulically connected cells, to which the MPPT and 0.5 V control strategies were applied. Three experiments were carried out using a relatively high copper concentration i.e. 1000 mg/L followed by a lower concentration i.e. 50 mg/L, with operational run times defined to meet the treatment requirements for distillery effluents considered. Real distillery waste was introduced into the cathode to reduce ionic copper concentrations. This waste was then recirculated to the anode as a feed stock after the copper depletion step, in order to test the bioenergy self-sustainability of the system. Approx. 60-95% copper was recovered in the form of deposits depending on starting concentration. However, the recovery was low when the anode was supplied with copper depleted distillery waste. Through process control (MPPT or 0.5 V applied voltage) the amount and form of the copper recovered could be manipulated.

10.
Small ; 14(10)2018 03.
Article in English | MEDLINE | ID: mdl-29359400

ABSTRACT

Copper nanoparticles (Cu-NPs) have a wide range of applications as heterogeneous catalysts. In this study, a novel green biosynthesis route for producing Cu-NPs using the metal-reducing bacterium, Shewanella oneidensis is demonstrated. Thin section transmission electron microscopy shows that the Cu-NPs are predominantly intracellular and present in a typical size range of 20-40 nm. Serial block-face scanning electron microscopy demonstrates the Cu-NPs are well-dispersed across the 3D structure of the cells. X-ray absorption near-edge spectroscopy and extended X-ray absorption fine-structure spectroscopy analysis show the nanoparticles are Cu(0), however, atomic resolution images and electron energy loss spectroscopy suggest partial oxidation of the surface layer to Cu2 O upon exposure to air. The catalytic activity of the Cu-NPs is demonstrated in an archetypal "click chemistry" reaction, generating good yields during azide-alkyne cycloadditions, most likely catalyzed by the Cu(I) surface layer of the nanoparticles. Furthermore, cytochrome deletion mutants suggest a novel metal reduction system is involved in enzymatic Cu(II) reduction and Cu-NP synthesis, which is not dependent on the Mtr pathway commonly used to reduce other high oxidation state metals in this bacterium. This work demonstrates a novel, simple, green biosynthesis method for producing efficient copper nanoparticle catalysts.

11.
J Environ Radioact ; 142: 96-102, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25659921

ABSTRACT

Understanding the biogeochemical behaviour and potential mobility of actinides in soils and groundwater is vital for developing remediation and management strategies for radionuclide-contaminated land. Pu is known to have a high Kd in soils and sediments, however remobilization of low concentrations of Pu remains a concern. Here, some of the physicochemical properties of Pu and the co-contaminant, Am, are investigated in contaminated soils from Aldermaston, Berkshire, UK, and the Esk Estuary, Cumbria, UK, to determine their potential mobility. Sequential extraction techniques were used to examine the host-phases of the actinides in these soils and their susceptibility to microbiological leaching was investigated using acidophilic sulphur-oxidising bacteria. Sequential extractions found the majority of (239,240)Pu associated with the highly refractory residual phase in both the Aldermaston (63.8-85.5 %) and Esk Estuary (91.9-94.5%) soils. The (241)Am was distributed across multiple phases including the reducible oxide (26.1-40.0%), organic (45.6-63.6%) and residual fractions (1.9-11.1%). Plutonium proved largely resistant to leaching from microbially-produced sulphuric acid, with a maximum 0.18% leached into solution, although up to 12.5% of the (241)Am was leached under the same conditions. If Pu was present as distinct oxide particles in the soil, then (241)Am, a decay product of Pu, would be expected to be physically retained in the particle. The differences in geochemical association and bioleachability of the two actinides suggest that this is not the case and hence, that significant Pu is not present as distinct particles. These data suggest the majority of Pu in the contaminated soils studied is highly recalcitrant to geochemical changes and is likely to remain immobile over significant time periods, even when challenged with aggressive "bioleaching" bacteria.


Subject(s)
Americium/chemistry , Geologic Sediments/analysis , Plutonium/chemistry , Soil Pollutants, Radioactive/chemistry , Autoradiography , England
12.
Environ Sci Technol ; 46(22): 12591-9, 2012 Nov 20.
Article in English | MEDLINE | ID: mdl-23043215

ABSTRACT

The fate of As(V) during microbial reduction by Geobacter sulfurreducens of Fe(III) in synthetic arsenic-bearing schwertmannites has been investigated. During incubation at pH7, the rate of biological Fe(III) reduction increased with increasing initial arsenic concentration. From schwertmannites with a relatively low arsenic content (<0.3 wt %), only magnetite was formed as a result of dissimilatory iron reduction. However, bioreduction of schwertmannites with higher initial arsenic concentrations (>0.79 wt %) resulted in the formation of goethite. At no stage during the bioreduction process did the concentration of arsenic in solution exceed 120 µgL(1), even for a schwertmannite with an initial arsenic content of 4.13 wt %. This suggests that the majority of the arsenic is retained in the biominerals or by sorption at the surfaces of newly formed nanoparticles. Subtle differences in the As K-edge XANES spectra obtained from biotransformation products are clearly related to the initial arsenic content of the schwertmannite starting materials. For products obtained from schwertmannites with higher initial As concentrations, one dominant population of As(V) species bonded to only two Fe atoms was evident. By contrast, schwertmannites with relatively low arsenic concentrations gave biotransformation products in which two distinctly different populations of As(V) persisted. The first is the dominant population described above, the second is a minority population characterized by As(V) bonded to four Fe atoms. Both XAS and XMCD evidence suggest that the latter form of arsenic is that taken into the tetrahedral sites of the magnetite. We conclude that the majority population of As(V) is sorbed to the surface of the biotransformation products, whereas the minority population comprises As(V) incorporated into the tetrahedral sites of the biomagnetite. This suggests that microbial reduction of highly bioavailable As(V)-bearing Fe(III) mineral does not necessarily result in the mobilization of the arsenic.


Subject(s)
Arsenic/metabolism , Ferric Compounds/metabolism , Geobacter/metabolism , Iron Compounds/metabolism , Water Pollutants, Chemical/metabolism , Arsenic/analysis , Ferrosoferric Oxide/metabolism , Hydrogen-Ion Concentration , Minerals/metabolism , Oxidation-Reduction
13.
Environ Sci Technol ; 44(7): 2577-84, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20196588

ABSTRACT

The influence of Fe(III) starting material on the ability of magnetically recoverable biogenic magnetites produced by Geobacter sulfurreducens to retain metal oxyanion contaminants has been investigated. The reduction/removal of aqueous Cr(VI) was used to probe the reactivity of the biomagnetites. Nanomagnetites produced by the bacterial reduction of schwertmannite powder were more efficient at reducing Cr(VI) than either ferrihydrite "gel"-derived biomagnetite or commercial nanoscale Fe(3)O(4). Examination of post-exposure magnetite surfaces indicated both Cr(III) and Cr(VI) were present. X-ray magnetic circular dichroism (XMCD) studies at the Fe L(2,3)-edge showed that the amount of Fe(III) "gained" by Cr(VI) reduction could not be entirely accounted for by "lost" Fe(II). Cr L(2,3)-edge XMCD spectra found Cr(III) replaced approximately 14%-20% of octahedral Fe in both biogenic magnetites, producing a layer resembling CrFe(2)O(4). However, schwertmannite-derived biomagnetite was associated with approximately twice as much Cr as ferrihydrite-derived magnetite. Column studies using a gamma-camera to image a (99)mTc(VII) radiotracer were performed to visualize the relative performances of biogenic magnetites at removing aqueous metal oxyanion contaminants. Again, schwertmannite-derived biomagnetite proved capable of retaining more (approximately 20%) (99)mTc(VII) than ferrihydrite-derived biomagnetite, confirming that the production of biomagnetite can be fine-tuned for efficient environmental remediation through careful selection of the Fe(III) mineral substrate supplied to Fe(III)-reducing bacteria.


Subject(s)
Chromium/isolation & purification , Environmental Restoration and Remediation/methods , Minerals/chemistry , Nanoparticles/chemistry , Technetium/isolation & purification , Biodegradation, Environmental , Circular Dichroism , Electrons , Ferric Compounds/chemistry , Ferrosoferric Oxide/chemistry , Oxidation-Reduction , Oxygen/chemistry , Photoelectron Spectroscopy , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...