Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 284: 91-101, 2018 Oct 20.
Article in English | MEDLINE | ID: mdl-30142414

ABSTRACT

The CRISPR/Cas9 system has enabled efficient modification of genes in a variety of cellular systems for studying phenotypic effects of genetic perturbations. However, with this technology comes the inherent risk of generating off-target effects (OTEs) in addition to the desired modifications. As such, it can be difficult to conclusively determine that the observed phenotypic changes are in fact due to the intended modification of the target gene and not from random mutations elsewhere in the genome. In addition, biological variations observed within cultured cells or laboratory animals can also confound results and need to be addressed. In this article, we review potential sources of experimental and biological variation as well as propose experimental options to minimize and control OTEs and other variations in CRISPR genome editing experiments for exploratory research applications. Confirmation of on-target KO effect by orthogonal approaches is also discussed.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , CRISPR-Associated Proteins/genetics , Humans
2.
Cancer Res ; 69(15): 6171-8, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19622772

ABSTRACT

Uterine leiomyomata, or fibroids, are benign tumors of the uterine myometrium that significantly affect up to 30% of reproductive-age women. Despite being the primary cause of hysterectomy in the United States, accounting for up to 200,000 procedures annually, the etiology of leiomyoma remains largely unknown. As a basis for understanding leiomyoma pathogenesis and identifying targets for pharmacotherapy, we conducted transcriptional profiling of leiomyoma and unaffected myometrium from humans and Eker rats, the best characterized preclinical model of leiomyomata. A global comparison of mRNA from leiomyoma versus myometrium in human and rat identified a highly significant overlap of dysregulated gene expression in leiomyomata. An unbiased pathway analysis using a method of gene-set enrichment based on the sigPathway algorithm detected the mammalian target of rapamycin (mTOR) pathway as one of the most highly up-regulated pathways in both human and rat tumors. To validate this pathway as a therapeutic target for uterine leiomyomata, preclinical studies were conducted in Eker rats. These rats develop uterine leiomyomata as a consequence of loss of Tsc2 function and up-regulation of mTOR signaling. Inhibition of mTOR in female Eker rats with the rapamycin analogue WAY-129327 for 2 weeks decreased mTOR signaling and cell proliferation in tumors, and treatment for 4 months significantly decreased tumor incidence, multiplicity, and size. These results identify dysregulated mTOR signaling as a component of leiomyoma etiology across species and directly show the dependence of uterine leiomyomata with activated mTOR on this signaling pathway for growth.


Subject(s)
Leiomyoma/metabolism , Protein Kinases/metabolism , Uterine Neoplasms/metabolism , Animals , Female , Gene Expression Regulation, Neoplastic , Humans , Leiomyoma/genetics , Myometrium/metabolism , Myometrium/physiology , Protein Array Analysis , Protein Kinases/genetics , Rats , Signal Transduction/drug effects , TOR Serine-Threonine Kinases , Uterine Neoplasms/genetics
3.
Antimicrob Agents Chemother ; 48(12): 4813-21, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15561861

ABSTRACT

A novel nonnucleoside inhibitor of hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), [(1R)-5-cyano-8-methyl-1-propyl-1,3,4,9-tetrahydropyano[3,4-b]indol-1-yl] acetic acid (HCV-371), was discovered through high-throughput screening followed by chemical optimization. HCV-371 displayed broad inhibitory activities against the NS5B RdRp enzyme, with 50% inhibitory concentrations ranging from 0.3 to 1.8 microM for 90% of the isolates derived from HCV genotypes 1a, 1b, and 3a. HCV-371 showed no inhibitory activity against a panel of human polymerases, including mitochondrial DNA polymerase gamma, and other unrelated viral polymerases, demonstrating its specificity for the HCV polymerase. A single administration of HCV-371 to cells containing the HCV subgenomic replicon for 3 days resulted in a dose-dependent reduction of the steady-state levels of viral RNA and protein. Multiple treatments with HCV-371 for 16 days led to a >3-log10 reduction in the HCV RNA level. In comparison, multiple treatments with a similar inhibitory dose of alpha interferon resulted in a 2-log10 reduction of the viral RNA level. In addition, treatment of cells with a combination of HCV-371 and pegylated alpha interferon resulted in an additive antiviral activity. Within the effective antiviral concentrations of HCV-371, there was no effect on cell viability and metabolism. The intracellular antiviral specificity of HCV-371 was demonstrated by its lack of activity in cells infected with several DNA or RNA viruses. Fluorescence binding studies show that HCV-371 binds the NS5B with an apparent dissociation constant of 150 nM, leading to high selectivity and lack of cytotoxicity in the antiviral assays.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Hepacivirus/drug effects , Hepacivirus/enzymology , Indoles/pharmacology , Pyrans/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Animals , Cells, Cultured , Chlorocebus aethiops , Cytopathogenic Effect, Viral , DNA-Directed DNA Polymerase/metabolism , Drug Evaluation, Preclinical , Escherichia coli/genetics , HIV Reverse Transcriptase/analysis , HIV Reverse Transcriptase/metabolism , Humans , Interferon-alpha/pharmacology , Replicon/drug effects , Spectrometry, Fluorescence , Substrate Specificity , Vero Cells , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/isolation & purification , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...