Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Br J Haematol ; 204(2): 399-401, 2024 02.
Article in English | MEDLINE | ID: mdl-37985143

ABSTRACT

The genetic underpinnings of beta-thalassaemia encompass a myriad of molecular mechanisms. The ability of synonymous mutations, an often-overlooked category of variants, to influence ß-globin expression and phenotypic disease is highlighted by this report by Gorivale et al. Commentary on: Gorivale et al. When a synonymous mutation breaks the silence in a thalassaemia patient. Br J Haematol 2024;204:677-682.


Subject(s)
Thalassemia , beta-Thalassemia , Humans , Silent Mutation , Mutation , beta-Thalassemia/genetics , beta-Globins/genetics , Globins/genetics
2.
Trends Genet ; 40(3): 276-290, 2024 03.
Article in English | MEDLINE | ID: mdl-38123442

ABSTRACT

In the past decade tRNA sequencing (tRNA-seq) has attracted considerable attention as an important tool for the development of novel approaches to quantify highly modified tRNA species and to propel tRNA research aimed at understanding the cellular physiology and disease and development of tRNA-based therapeutics. Many methods are available to quantify tRNA abundance while accounting for modifications and tRNA charging/acylation. Advances in both library preparation methods and bioinformatic workflows have enabled developments in next-generation sequencing (NGS) workflows. Other approaches forgo NGS applications in favor of hybridization-based approaches. In this review we provide a brief comparative overview of various tRNA quantification approaches, focusing on the advantages and disadvantages of these methods, which together facilitate reliable tRNA quantification.


Subject(s)
High-Throughput Nucleotide Sequencing , RNA, Transfer , RNA, Transfer/genetics , High-Throughput Nucleotide Sequencing/methods , Computational Biology , Transfer RNA Aminoacylation
3.
Genome Biol ; 24(1): 126, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37217943

ABSTRACT

Single nucleotide variants (SNVs) contribute to human genomic diversity. Synonymous SNVs are previously considered to be "silent," but mounting evidence has revealed that these variants can cause RNA and protein changes and are implicated in over 85 human diseases and cancers. Recent improvements in computational platforms have led to the development of numerous machine-learning tools, which can be used to advance synonymous SNV research. In this review, we discuss tools that should be used to investigate synonymous variants. We provide supportive examples from seminal studies that demonstrate how these tools have driven new discoveries of functional synonymous SNVs.


Subject(s)
Neoplasms , Polymorphism, Single Nucleotide , Humans , RNA , Machine Learning
4.
Virol J ; 20(1): 31, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36812119

ABSTRACT

BACKGROUND: Since the onset of the SARS-CoV-2 pandemic, bioinformatic analyses have been performed to understand the nucleotide and synonymous codon usage features and mutational patterns of the virus. However, comparatively few have attempted to perform such analyses on a considerably large cohort of viral genomes while organizing the plethora of available sequence data for a month-by-month analysis to observe changes over time. Here, we aimed to perform sequence composition and mutation analysis of SARS-CoV-2, separating sequences by gene, clade, and timepoints, and contrast the mutational profile of SARS-CoV-2 to other comparable RNA viruses. METHODS: Using a cleaned, filtered, and pre-aligned dataset of over 3.5 million sequences downloaded from the GISAID database, we computed nucleotide and codon usage statistics, including calculation of relative synonymous codon usage values. We then calculated codon adaptation index (CAI) changes and a nonsynonymous/synonymous mutation ratio (dN/dS) over time for our dataset. Finally, we compiled information on the types of mutations occurring for SARS-CoV-2 and other comparable RNA viruses, and generated heatmaps showing codon and nucleotide composition at high entropy positions along the Spike sequence. RESULTS: We show that nucleotide and codon usage metrics remain relatively consistent over the 32-month span, though there are significant differences between clades within each gene at various timepoints. CAI and dN/dS values vary substantially between different timepoints and different genes, with Spike gene on average showing both the highest CAI and dN/dS values. Mutational analysis showed that SARS-CoV-2 Spike has a higher proportion of nonsynonymous mutations than analogous genes in other RNA viruses, with nonsynonymous mutations outnumbering synonymous ones by up to 20:1. However, at several specific positions, synonymous mutations were overwhelmingly predominant. CONCLUSIONS: Our multifaceted analysis covering both the composition and mutation signature of SARS-CoV-2 gives valuable insight into the nucleotide frequency and codon usage heterogeneity of SARS-CoV-2 over time, and its unique mutational profile compared to other RNA viruses.


Subject(s)
COVID-19 , RNA Viruses , Humans , SARS-CoV-2/genetics , Nucleotides , COVID-19/genetics , Codon , Mutation , Genome, Viral , RNA Viruses/genetics , Evolution, Molecular
5.
Trends Pharmacol Sci ; 44(2): 73-84, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36307252

ABSTRACT

Synonymous gene recoding, the substitution of synonymous variants into the genetic sequence, has been used to overcome many production limitations in therapeutic development. However, the safety and efficacy of recoded therapeutics can be difficult to evaluate because synonymous codon substitutions can result in subtle, yet impactful changes in protein features and require sensitive methods for detection. Given that computational approaches have made significant leaps in recent years, we propose that machine-learning (ML) tools may be leveraged to assess gene-recoded therapeutics and foresee an opportunity to adapt codon contexts to enhance some powerful existing tools. Here, we examine how synonymous gene recoding has been used to address challenges in therapeutic development, explain the biological mechanisms underlying its effects, and explore the application of computational platforms to improve the surveillance of functional variants in therapeutic design.


Subject(s)
Codon , Drug Design , Therapeutics , Humans , Codon/genetics , Machine Learning
6.
STAR Protoc ; 3(3): 101648, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36052345

ABSTRACT

Here, we describe a bioinformatics pipeline that evaluates the interactions between coagulation-related proteins and genetic variants with SARS-CoV-2 proteins. This pipeline searches for host proteins that may bind to viral protein and identifies and scores the protein genetic variants to predict the disease pathogenesis in specific subpopulations. Additionally, it is able to find structurally similar motifs and identify potential binding sites within the host-viral protein complexes to unveil viral impact on regulated biological processes and/or host-protein impact on viral invasion or reproduction. For complete details on the use and execution of this protocol, please refer to Holcomb et al. (2021).


Subject(s)
COVID-19 , SARS-CoV-2 , Binding Sites , COVID-19/genetics , Host Microbial Interactions , Humans , SARS-CoV-2/genetics , Viral Proteins/genetics
7.
N Engl J Med ; 387(8): 753-756, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36001717
9.
Blood Adv ; 6(18): 5364-5378, 2022 09 27.
Article in English | MEDLINE | ID: mdl-35667091

ABSTRACT

The effects of synonymous single nucleotide variants (sSNVs) are often neglected because they do not alter protein primary structure. Nevertheless, there is growing evidence that synonymous variations may affect messenger RNA (mRNA) expression and protein conformation and activity, which may lead to protein deficiency and disease manifestations. Because there are >21 million possible sSNVs affecting the human genome, it is not feasible to experimentally validate the effect of each sSNV. Here, we report a comprehensive series of in silico analyses assessing sSNV impact on a specific gene. ADAMTS13 was chosen as a model for its large size, many previously reported sSNVs, and associated coagulopathy thrombotic thrombocytopenic purpura. Using various prediction tools of biomolecular characteristics, we evaluated all ADAMTS13 sSNVs registered in the National Center for Biotechnology Information database of single nucleotide polymorphisms, including 357 neutral sSNVs and 19 sSNVs identified in patients with thrombotic thrombocytopenic purpura. We showed that some sSNVs change mRNA-folding energy/stability, disrupt mRNA splicing, disturb microRNA-binding sites, and alter synonymous codon or codon pair usage. Our findings highlight the importance of considering sSNVs when assessing the complex effects of ADAMTS13 alleles, and our approach provides a generalizable framework to characterize sSNV impact in other genes and diseases.


Subject(s)
MicroRNAs , Purpura, Thrombotic Thrombocytopenic , ADAMTS13 Protein/genetics , Codon , Humans , Nucleotides , Purpura, Thrombotic Thrombocytopenic/genetics , RNA, Messenger/genetics
10.
J Thromb Haemost ; 20(9): 2098-2108, 2022 09.
Article in English | MEDLINE | ID: mdl-35753044

ABSTRACT

BACKGROUND: Von Willebrand factor (VWF) is elevated in sickle cell disease (SCD) and contributes to vaso-occlusion through its thrombogenic properties. VWF is regulated by ADAMTS13, a plasma protease that cleaves VWF into less bioactive multimers. Independent investigations have shown VWF to be elevated in SCD, whereas measurements of ADAMTS13 have been variable. OBJECTIVES: We assessed ADAMTS13 activity using multiple activity assays and measured levels of alternative VWF-cleaving proteases in SCD. METHODS/ PATIENTS: Plasma samples were collected from adult patients with SCD (n = 20) at a single institution when presenting for routine red cell exchange transfusion therapy. ADAMTS13 activity was measured by FRETS-VWF73, Technozym ADAMTS-13 Activity ELISA kit and a full-length VWF digestion reaction. Alternative VWF-cleaving proteases were identified by ELISA. A cell culture model was used to study the impact of SCD stimuli on endothelial ADAMTS13 and alternative VWF-cleaving proteases. RESULTS: ADAMTS13 activity was found to be moderately deficient across the SCD cohort as assessed by activity assays using a VWF A2 domain peptide substrate. However, SCD plasma showed preserved ability to digest full-length VWF, suggesting assay-discrepant results. Neutrophil and endothelial-derived proteases were found to be elevated in SCD plasma. Matrix metalloproteinase 9 specifically showed preferential cleavage of full-length VWF. Upregulation of alternative VWF-cleaving proteases occurred in endothelial cells exposed to SCD stimuli such as heme and hypoxia. CONCLUSIONS: This is the first demonstration of accessory plasma enzymes contributing to the regulation of VWF in a specific disease state and may have implications for assessing the VWF/ADAMTS13 axis in other settings.


Subject(s)
Anemia, Sickle Cell , von Willebrand Factor , ADAM Proteins , ADAMTS13 Protein , Adult , Endothelial Cells , Humans , von Willebrand Factor/chemistry
11.
Blood Adv ; 6(13): 3932-3944, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35413099

ABSTRACT

Hemophilia B is a blood clotting disorder caused by deficient activity of coagulation factor IX (FIX). Multiple recombinant FIX proteins are currently approved to treat hemophilia B, and several gene therapy products are currently being developed. Codon optimization is a frequently used technique in the pharmaceutical industry to improve recombinant protein expression by recoding a coding sequence using multiple synonymous codon substitutions. The underlying assumption of this gene recoding is that synonymous substitutions do not alter protein characteristics because the primary sequence of the protein remains unchanged. However, a critical body of evidence shows that synonymous variants can affect cotranslational folding and protein function. Gene recoding could potentially alter the structure, function, and in vivo immunogenicity of recoded therapeutic proteins. Here, we evaluated multiple recoded variants of F9 designed to further explore the effects of codon usage bias on protein properties. The detailed evaluation of these constructs showed altered conformations, and assessment of translation kinetics by ribosome profiling revealed differences in local translation kinetics. Assessment of wild-type and recoded constructs using a major histocompatibility complex (MHC)-associated peptide proteomics assay showed distinct presentation of FIX-derived peptides bound to MHC class II molecules, suggesting that despite identical amino acid sequence, recoded proteins could exhibit different immunogenicity risks. Posttranslational modification analysis indicated that overexpression from gene recoding results in suboptimal posttranslational processing. Overall, our results highlight potential functional and immunogenicity concerns associated with gene-recoded F9 products. These findings have general applicability and implications for other gene-recoded recombinant proteins.


Subject(s)
Hemophilia B , Codon , Factor IX/genetics , Factor IX/metabolism , Hemophilia B/genetics , Hemophilia B/therapy , Humans , Recombinant Proteins/genetics , Silent Mutation
12.
J Natl Cancer Inst ; 114(8): 1072-1094, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35477782

ABSTRACT

Once called "silent mutations" and assumed to have no effect on protein structure and function, synonymous variants are now recognized to be drivers for some cancers. There have been significant advances in our understanding of the numerous mechanisms by which synonymous single nucleotide variants (sSNVs) can affect protein structure and function by affecting pre-mRNA splicing, mRNA expression, stability, folding, micro-RNA binding, translation kinetics, and co-translational folding. This review highlights the need for considering sSNVs in cancer biology to gain a better understanding of the genetic determinants of human cancers and to improve their diagnosis and treatment. We surveyed the literature for reports of sSNVs in cancer and found numerous studies on the consequences of sSNVs on gene function with supporting in vitro evidence. We also found reports of sSNVs that have statistically significant associations with specific cancer types but for which in vitro studies are lacking to support the reported associations. Additionally, we found reports of germline and somatic sSNVs that were observed in numerous clinical studies and for which in silico analysis predicts possible effects on gene function. We provide a review of these investigations and discuss necessary future studies to elucidate the mechanisms by which sSNVs disrupt protein function and play a role in tumorigeneses, cancer progression, and treatment efficacy. As splicing dysregulation is one of the most well-recognized mechanisms by which sSNVs impact protein function, we also include our own in silico analysis for predicting which sSNVs may disrupt pre-mRNA splicing.


Subject(s)
Neoplasms , RNA Precursors , Humans , Neoplasms/genetics , Neoplasms/therapy , Polymorphism, Single Nucleotide , Treatment Outcome
13.
Am J Hum Genet ; 108(8): 1502-1511, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34256028

ABSTRACT

Predicting the effect of a mutated gene before the onset of symptoms of genetic diseases would greatly facilitate diagnosis and potentiate early intervention. There have been myriad attempts to predict the effects of single-nucleotide variants. However, the applicability of these efforts does not scale to co-occurring variants. Furthermore, an increasing number of protein therapeutics contain co-occurring nucleotide variations, adding uncertainty during development to the safety and efficiency of these drugs. Co-occurring nucleotide variants may often have synergistic, additive, or antagonistic effects on protein attributes, further complicating the task of outcome prediction. We tested four models based on the cooperative and antagonistic effects of co-occurring variants to predict pathogenicity and effectiveness of protein therapeutics. A total of 30 attributes, including amino acid and nucleotide features, as well as existing single-variant effect prediction tools, were considered on the basis of previous studies on single-nucleotide variants. Importantly, the effects of synonymous variants, often seen in protein therapeutics, were also included in our models. We used 12 datasets of people with monogenic diseases and controls with co-occurring genetic variants to evaluate the accuracy of our models, accomplishing a degree of accuracy comparable to that of prediction tools for single-nucleotide variants. More importantly, our framework is generalizable to new, well-curated datasets of monogenic diseases and new variant scoring tools. This approach successfully assists in addressing the challenging task of predicting the effect of co-occurring variants on pathogenicity and protein effectiveness and is applicable for a wide range of protein therapeutics and genetic diseases.


Subject(s)
Computational Biology/methods , Disease/genetics , Genome, Human , Mutation , Polymorphism, Single Nucleotide , Proteome/analysis , Humans , Proteome/metabolism
14.
Genome Med ; 13(1): 122, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34321100

ABSTRACT

BACKGROUND: Gene expression is highly variable across tissues of multi-cellular organisms, influencing the codon usage of the tissue-specific transcriptome. Cancer disrupts the gene expression pattern of healthy tissue resulting in altered codon usage preferences. The topic of codon usage changes as they relate to codon demand, and tRNA supply in cancer is of growing interest. METHODS: We analyzed transcriptome-weighted codon and codon pair usage based on The Cancer Genome Atlas (TCGA) RNA-seq data from 6427 solid tumor samples and 632 normal tissue samples. This dataset represents 32 cancer types affecting 11 distinct tissues. Our analysis focused on tissues that give rise to multiple solid tumor types and cancer types that are present in multiple tissues. RESULTS: We identified distinct patterns of synonymous codon usage changes for different cancer types affecting the same tissue. For example, a substantial increase in GGT-glycine was observed in invasive ductal carcinoma (IDC), invasive lobular carcinoma (ILC), and mixed invasive ductal and lobular carcinoma (IDLC) of the breast. Change in synonymous codon preference favoring GGT correlated with change in synonymous codon preference against GGC in IDC and IDLC, but not in ILC. Furthermore, we examined the codon usage changes between paired healthy/tumor tissue from the same patient. Using clinical data from TCGA, we conducted a survival analysis of patients based on the degree of change between healthy and tumor-specific codon usage, revealing an association between larger changes and increased mortality. We have also created a database that contains cancer-specific codon and codon pair usage data for cancer types derived from TCGA, which represents a comprehensive tool for codon-usage-oriented cancer research. CONCLUSIONS: Based on data from TCGA, we have highlighted tumor type-specific signatures of codon and codon pair usage. Paired data revealed variable changes to codon usage patterns, which must be considered when designing personalized cancer treatments. The associated database, CancerCoCoPUTs, represents a comprehensive resource for codon and codon pair usage in cancer and is available at https://dnahive.fda.gov/review/cancercocoputs/ . These findings are important to understand the relationship between tRNA supply and codon demand in cancer states and could help guide the development of new cancer therapeutics.


Subject(s)
Codon Usage , Codon , Computational Biology/methods , Databases, Genetic , Neoplasms/diagnosis , Neoplasms/genetics , Biomarkers, Tumor , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Genomics/methods , Humans , Kaplan-Meier Estimate , Neoplasms/mortality , Prognosis , Transcriptome
15.
Open Forum Infect Dis ; 8(6): ofab189, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34109257

ABSTRACT

BACKGROUND: The advent of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provoked researchers to propose multiple antiviral strategies to improve patients' outcomes. Studies provide evidence that cyclosporine A (CsA) decreases SARS-CoV-2 replication in vitro and decreases mortality rates of coronavirus disease 2019 (COVID-19) patients. CsA binds cyclophilins, which isomerize prolines, affecting viral protein activity. METHODS: We investigated the proline composition from various coronavirus proteomes to identify proteins that may critically rely on cyclophilin's peptidyl-proline isomerase activity and found that the nucleocapsid (N) protein significantly depends on cyclophilin A (CyPA). We modeled CyPA and N protein interactions to demonstrate the N protein as a potential indirect therapeutic target of CsA, which we propose may impede coronavirus replication by obstructing nucleocapsid folding. RESULTS: Finally, we analyzed the literature and protein-protein interactions, finding evidence that, by inhibiting CyPA, CsA may impact coagulation proteins and hemostasis. CONCLUSIONS: Despite CsA's promising antiviral characteristics, the interactions between cyclophilins and coagulation factors emphasize risk stratification for COVID patients with thrombosis dispositions.

16.
PLoS Comput Biol ; 17(3): e1008805, 2021 03.
Article in English | MEDLINE | ID: mdl-33730015

ABSTRACT

Thrombosis is a recognized complication of Coronavirus disease of 2019 (COVID-19) and is often associated with poor prognosis. There is a well-recognized link between coagulation and inflammation, however, the extent of thrombotic events associated with COVID-19 warrants further investigation. Poly(A) Binding Protein Cytoplasmic 4 (PABPC4), Serine/Cysteine Proteinase Inhibitor Clade G Member 1 (SERPING1) and Vitamin K epOxide Reductase Complex subunit 1 (VKORC1), which are all proteins linked to coagulation, have been shown to interact with SARS proteins. We computationally examined the interaction of these with SARS-CoV-2 proteins and, in the case of VKORC1, we describe its binding to ORF7a in detail. We examined the occurrence of variants of each of these proteins across populations and interrogated their potential contribution to COVID-19 severity. Potential mechanisms, by which some of these variants may contribute to disease, are proposed. Some of these variants are prevalent in minority groups that are disproportionally affected by severe COVID-19. Therefore, we are proposing that further investigation around these variants may lead to better understanding of disease pathogenesis in minority groups and more informed therapeutic approaches.


Subject(s)
Blood Coagulation , Blood Proteins/genetics , COVID-19/metabolism , Complement C1 Inhibitor Protein/genetics , Poly(A)-Binding Proteins/genetics , SARS-CoV-2/metabolism , Vitamin K Epoxide Reductases/genetics , Anticoagulants/administration & dosage , Blood Proteins/metabolism , COVID-19/physiopathology , COVID-19/virology , Complement C1 Inhibitor Protein/metabolism , Genome-Wide Association Study , Humans , Models, Molecular , Mutation , Poly(A)-Binding Proteins/metabolism , Protein Binding , SARS-CoV-2/genetics , Severity of Illness Index , Viral Proteins/metabolism , Vitamin K Epoxide Reductases/metabolism , Warfarin/administration & dosage
17.
F1000Res ; 9: 174, 2020.
Article in English | MEDLINE | ID: mdl-33014344

ABSTRACT

Ribosome profiling provides the opportunity to evaluate translation kinetics at codon level resolution. Here, we describe ribosome profiling data, generated from two HEK293T cell lines. The ribosome profiling data are composed of Ribo-seq (mRNA sequencing data from ribosome protected fragments) and RNA-seq data (total RNA sequencing). The two HEK293T cell lines each express a version of the F9 gene, both of which are translated into identical proteins in terms of their amino acid sequences. However, these F9 genes vary drastically in their codon usage and predicted mRNA structure. We also provide the pipeline that we used to analyze the data. Further analyzing this dataset holds great potential as it can be used i) to unveil insights into the composition and regulation of the transcriptome, ii) for comparison with other ribosome profiling datasets, iii) to measure the rate of protein synthesis across the proteome and identify differences in elongation rates, iv) to discover previously unidentified translation of peptides, v) to explore the effects of codon usage or codon context in translational kinetics and vi) to investigate cotranslational folding. Importantly, a unique feature of this dataset, compared to other available ribosome profiling data, is the presence of the F9 gene in two very distinct coding sequences.


Subject(s)
Codon/genetics , Factor IX/genetics , Protein Biosynthesis , Ribosomes/genetics , HEK293 Cells , Humans
18.
Sci Rep ; 10(1): 15643, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32973171

ABSTRACT

As the SARS-CoV-2 pandemic is rapidly progressing, the need for the development of an effective vaccine is critical. A promising approach for vaccine development is to generate, through codon pair deoptimization, an attenuated virus. This approach carries the advantage that it only requires limited knowledge specific to the virus in question, other than its genome sequence. Therefore, it is well suited for emerging viruses, for which we may not have extensive data. We performed comprehensive in silico analyses of several features of SARS-CoV-2 genomic sequence (e.g., codon usage, codon pair usage, dinucleotide/junction dinucleotide usage, RNA structure around the frameshift region) in comparison with other members of the coronaviridae family of viruses, the overall human genome, and the transcriptome of specific human tissues such as lung, which are primarily targeted by the virus. Our analysis identified the spike (S) and nucleocapsid (N) proteins as promising targets for deoptimization and suggests a roadmap for SARS-CoV-2 vaccine development, which can be generalizable to other viruses.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/prevention & control , Nucleocapsid Proteins/genetics , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/genetics , Viral Vaccines/immunology , Base Sequence , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Coronavirus Nucleocapsid Proteins , Genome, Viral/genetics , Humans , Nucleocapsid Proteins/immunology , Phosphoproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Inactivated/immunology , Whole Genome Sequencing
19.
bioRxiv ; 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32935103

ABSTRACT

Thrombosis has been one of the complications of the Coronavirus disease of 2019 (COVID-19), often associated with poor prognosis. There is a well-recognized link between coagulation and inflammation, however, the extent of thrombotic events associated with COVID-19 warrants further investigation. Poly(A) Binding Protein Cytoplasmic 4 (PABPC4), Serine/Cysteine Proteinase Inhibitor Clade G Member 1 (SERPING1) and Vitamin K epOxide Reductase Complex subunit 1 (VKORC1), which are all proteins linked to coagulation, have been shown to interact with SARS proteins. We computationally examined the interaction of these with SARS-CoV-2 proteins and, in the case of VKORC1, we describe its binding to ORF7a in detail. We examined the occurrence of variants of each of these proteins across populations and interrogated their potential contribution to COVID-19 severity. Potential mechanisms by which some of these variants may contribute to disease are proposed. Some of these variants are prevalent in minority groups that are disproportionally affected by severe COVID-19. Therefore, we are proposing that further investigation around these variants may lead to better understanding of disease pathogenesis in minority groups and more informed therapeutic approaches. AUTHOR SUMMARY: Increased blood clotting, especially in the lungs, is a common complication of COVID-19. Infectious diseases cause inflammation which in turn can contribute to increased blood clotting. However, the extent of clot formation that is seen in the lungs of COVID-19 patients suggests that there may be a more direct link. We identified three human proteins that are involved indirectly in the blood clotting cascade and have been shown to interact with proteins of SARS virus, which is closely related to the novel coronavirus. We examined computationally the interaction of these human proteins with the viral proteins. We looked for genetic variants of these proteins and examined how these variants are distributed across populations. We investigated whether variants of these genes could impact severity of COVID-19. Further investigation around these variants may provide clues for the pathogenesis of COVID-19 particularly in minority groups.

20.
Thromb Haemost ; 120(12): 1668-1679, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32838472

ABSTRACT

Coronavirus disease of 2019 (COVID-19) is the clinical manifestation of the respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While primarily recognized as a respiratory disease, it is clear that COVID-19 is systemic illness impacting multiple organ systems. One defining clinical feature of COVID-19 has been the high incidence of thrombotic events. The underlying processes and risk factors for the occurrence of thrombotic events in COVID-19 remain inadequately understood. While severe bacterial, viral, or fungal infections are well recognized to activate the coagulation system, COVID-19-associated coagulopathy is likely to have unique mechanistic features. Inflammatory-driven processes are likely primary drivers of coagulopathy in COVID-19, but the exact mechanisms linking inflammation to dysregulated hemostasis and thrombosis are yet to be delineated. Cumulative findings of microvascular thrombosis has raised question if the endothelium and microvasculature should be a point of investigative focus. von Willebrand factor (VWF) and its protease, a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS-13), play important role in the maintenance of microvascular hemostasis. In inflammatory conditions, imbalanced VWF-ADAMTS-13 characterized by elevated VWF levels and inhibited and/or reduced activity of ADAMTS-13 has been reported. Also, an imbalance between ADAMTS-13 activity and VWF antigen is associated with organ dysfunction and death in patients with systemic inflammation. A thorough understanding of VWF-ADAMTS-13 interactions during early and advanced phases of COVID-19 could help better define the pathophysiology, guide thromboprophylaxis and treatment, and improve clinical prognosis.


Subject(s)
COVID-19/complications , Disseminated Intravascular Coagulation/etiology , Microvessels/pathology , SARS-CoV-2/physiology , Thrombosis/etiology , ADAMTS13 Protein/metabolism , Animals , Blood Coagulation/immunology , Humans , von Willebrand Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...