Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5472, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942783

ABSTRACT

Understanding spin-lattice interactions in antiferromagnets is a critical element of the fields of antiferromagnetic spintronics and magnonics. Recently, coherent nonlinear phonon dynamics mediated by a magnon state were discovered in an antiferromagnet. Here, we suggest that a strongly coupled two-magnon-one phonon state in this prototypical system opens a novel pathway to coherently control magnon-phonon dynamics. Utilizing intense narrow-band terahertz (THz) pulses and tunable magnetic fields up to µ0Hext = 7 T, we experimentally realize the conditions of magnon-phonon Fermi resonance in antiferromagnetic CoF2. These conditions imply that both the spin and the lattice anharmonicities harvest energy from the transfer between the subsystems if the magnon eigenfrequency fm is half the frequency of the phonon 2fm = fph. Performing THz pump-infrared probe spectroscopy in conjunction with simulations, we explore the coupled magnon-phonon dynamics in the vicinity of the Fermi-resonance and reveal the corresponding fingerprints of nonlinear interaction facilitating energy exchange between these subsystems.

2.
Nat Mater ; 22(6): 673-674, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37264186
3.
ACS Photonics ; 10(2): 552-553, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36820327

ABSTRACT

[This corrects the article DOI: 10.1021/acsphotonics.7b01402.].

4.
Nano Lett ; 22(23): 9773-9780, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36321690

ABSTRACT

Magnetic memory combining plasmonics and magnetism is poised to dramatically increase the bit density and energy efficiency of light-assisted ultrafast magnetic storage, thanks to nanoplasmon-driven enhancement and confinement of light. Here we devise a new path for that, simultaneously enabling light-driven bit downscaling, reduction of the required energy for magnetic memory writing, and a subtle control over the degree of demagnetization in a magnetophotonic surface crystal. It features a regular array of truncated-nanocone-shaped Au-TbCo antennas showing both localized plasmon and surface lattice resonance modes. The ultrafast magnetization dynamics of the nanoantennas show a 3-fold resonant enhancement of the demagnetization efficiency. The degree of demagnetization is further tuned by activating surface lattice modes. This reveals a platform where ultrafast demagnetization is localized at the nanoscale and its extent can be controlled at will, rendering it multistate and potentially opening up so-far-unforeseen nanomagnetic neuromorphic-like systems operating at femtosecond time scales controlled by light.

5.
Science ; 374(6575): 1608-1611, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34941422

ABSTRACT

Understanding spin-lattice coupling represents a key challenge in modern condensed matter physics, with crucial importance and implications for ultrafast and two-dimensional magnetism. The efficiency of angular momentum and energy transfer between spins and the lattice imposes fundamental speed limits on the ability to control spins in spintronics, magnonics, and magnetic data storage. We report on an efficient nonlinear mechanism of spin-lattice coupling driven by terahertz light pulses. A nearly single-cycle terahertz pulse resonantly interacts with a coherent magnonic state in the antiferromagnet cobalt difluoride (CoF2) and excites the Raman-active terahertz phonon. The results reveal the distinctive functionality of antiferromagnets that allows ultrafast spin-lattice coupling using light.

6.
Nanoscale ; 13(46): 19367-19375, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34698755

ABSTRACT

The quest to improve the density, speed and energy efficiency of magnetic memory storage has led to the exploration of new ways of optically manipulating magnetism at the ultrafast time scale, in particular in ferrimagnetic alloys. While all-optical magnetization switching is well-established on the femtosecond timescale, lateral nanoscale confinement and thus the potential significant reduction of the size of the magnetic element remains an outstanding challenge. Here we employ resonant electromagnetic energy funneling through plasmon nanoantennas to influence the demagnetization dynamics of a ferrimagnetic TbCo alloy thin film. We demonstrate how Ag nanoring-shaped antennas under resonant optical femtosecond pumping reduce the overall demagnetization in the underlying films up to three times compared to non-resonant illumination. We attribute such a substantial reduction to the nanoscale confinement of the demagnetization process. This is qualitatively supported by the electromagnetic simulations that strongly evidence the resonant optical energy-funneling to the nanoscale from the nanoantennas into the ferrimagnetic film. This observation is an important step for reaching deterministic ultrafast all-optical magnetization switching at the nanoscale in such systems, opening a route to develop nanoscale ultrafast magneto-optics.

7.
Light Sci Appl ; 10(1): 8, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33408323

ABSTRACT

Although photonics presents the fastest and most energy-efficient method of data transfer, magnetism still offers the cheapest and most natural way to store data. The ultrafast and energy-efficient optical control of magnetism is presently a missing technological link that prevents us from reaching the next evolution in information processing. The discovery of all-optical magnetization reversal in GdFeCo with the help of 100 fs laser pulses has further aroused intense interest in this compelling problem. Although the applicability of this approach to high-speed data processing depends vitally on the maximum repetition rate of the switching, the latter remains virtually unknown. Here we experimentally unveil the ultimate frequency of repetitive all-optical magnetization reversal through time-resolved studies of the dual-shot magnetization dynamics in Gd27Fe63.87Co9.13. Varying the intensities of the shots and the shot-to-shot separation, we reveal the conditions for ultrafast writing and the fastest possible restoration of magnetic bits. It is shown that although magnetic writing launched by the first shot is completed after 100 ps, a reliable rewriting of the bit by the second shot requires separating the shots by at least 300 ps. Using two shots partially overlapping in space and minimally separated by 300 ps, we demonstrate an approach for GHz magnetic writing that can be scaled down to sizes below the diffraction limit.

8.
Sci Rep ; 9(1): 697, 2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30679493

ABSTRACT

The ability to switch ferroics (magnets, ferroelectrics, multiferroics) between two stable bit states is the main principle of modern data storage technology. Due to many new ideas, originating from fundamental research during the last 50 years, this technology has developed in a breath-taking fashion. Ever increasing demands for faster and more energy efficient data storage strongly motivate fundamental studies of dynamics in ferroics triggered by ultrashort stimuli. It has been recently realized that nearly single cycle intense THz pulses and the phenomenon of the second harmonic generation are appealing tools for excitation and detection of poorly understood ultrafast dynamics of electric polarization in ferroelectrics at the picosecond timescale. Here we investigate picosecond dynamics of second harmonic from near-infrared pulse in ferroelectric heterostructure Ba0.8Sr0.2TiO3/MgO triggered by the electric field of a nearly single cycle intense THz pulse. The dynamics of the nonlinear optical signal is characterized by a step and oscillations at the frequency of about 1.67 THz. Although the observations can be mistakenly interpreted as oscillations of the electric polarization at the frequency of the soft mode and switching of the order parameter to another metastable state, here we show that the THz modulation of second harmonic generation in Ba0.8Sr0.2TiO3/MgO has a purely optical origin. The observation can be explained assuming that the THz pulse is a relativistically propagating inhomogeneity which induces center of symmetry breaking and linear birefringence. Our work reveals the role of propagation effects in interpretation of time-resolved non-linear optical experiments and thus it has important implications for experimental studies of ultrafast dynamics in ferroics.

9.
ACS Photonics ; 5(4): 1375-1380, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29780853

ABSTRACT

Magnon-polaritons are shown to play a dominant role in the propagation of terahertz (THz) waves through TmFeO3 orthoferrite, if the frequencies of the waves are in the vicinity of the quasi-antiferromagnetic spin resonance mode. Both time-domain THz transmission and emission spectroscopies reveal clear beatings between two modes with frequencies slightly above and slightly below this resonance, respectively. Rigorous modeling of the interaction between the spins of TmFeO3 and the THz light shows that the frequencies correspond to the upper and lower magnon-polariton branches. Our findings reveal the previously ignored importance of propagation effects and polaritons in such heavily debated areas as THz magnonics and THz spectroscopy of electromagnons. It also shows that future progress in these areas calls for an interdisciplinary approach at the interface between magnetism and photonics.

10.
Rev Mod Phys ; 89(2)2017.
Article in English | MEDLINE | ID: mdl-28890576

ABSTRACT

This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important concepts include spin accumulation, spin currents, spin transfer torque, and spin pumping. An overview is provided to the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. The article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes.

11.
Sci Rep ; 7(1): 687, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28386081

ABSTRACT

Second Harmonic Generation induced by the electric field of a strong nearly single-cycle terahertz pulse with the peak amplitude of 300 kV/cm is studied in a classical inorganic ferroelectric thin film of (Ba0.8Sr0.2)TiO3. The dependences of the SHG intensity on the polarization of the incoming light is revealed and interpreted in terms of electric polarization induced in the plane of the film. As the THz pulse pumps the medium in the range of phononic excitations, the induced polarization is explained as a dynamical change of the ferrolectric order parameter. It is estimated that under action of the THz pulse the ferroelectric order parameter acquires an in-plane component up to 6% of the net polarization.

12.
Opt Lett ; 41(21): 5071-5073, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27805688

ABSTRACT

Single-frequency terahertz modulation of the magneto-optical Faraday effect with a record amplitude of the polarization rotation of ∼0.5° is achieved using a slab of the etalon Faraday rotator crystal Tb3Ga5O12. The modulation is the result of the interaction of two counterpropagating laser pulses via the optical Kerr effect. The frequency of the modulation is determined by the applied magnetic field and is continuously tunable in a terahertz frequency range between 0 and 0.7 THz.

13.
Nano Lett ; 15(10): 6862-8, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26312732

ABSTRACT

Single femtosecond optical laser pulses, of sufficient intensity, are demonstrated to reverse magnetization in a process known as all-optical switching. Gold two-wire antennas are placed on the all-optical switching film TbFeCo. These structures are resonant with the optical field, and they create a field enhancement in the near-field which confines the area where optical switching can occur. The magnetic switching that occurs around and below the antenna is imaged using resonant X-ray holography and magnetic circular dichroism. The results not only show the feasibility of controllable switching with antenna assistance but also demonstrate the highly inhomogeneous nature of the switching process, which is attributed to the process depending on the material's heterogeneity.

14.
Opt Express ; 23(11): 14010-7, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26072770

ABSTRACT

Liquid crystals are superior optical materials for large area displays, but it is considered that their collective and slow-millisecond response makes them useless for ultrafast optical applications. In contrast to that, we here demonstrate an ultrafast optical response of a nematic liquid crystal, which is induced by an intense femtosecond optical impulse. We show that the refractive index of the nematic liquid crystal pentyl-cyanobiphenyl can be modulated at a time scale as fast as 500 fs via a coherently excited optical Kerr effect. The change in the refractive index is in the order of 10-4 at a fluence of 4 mJ/cm2 and is strongly polarization dependent. This unprecedented result opens new ways towards ultrafast all-optical modulation in liquid crystal-based devices.

15.
Nat Mater ; 13(3): 225-6, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24531399
16.
Rep Prog Phys ; 76(2): 026501, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23377279

ABSTRACT

This review discusses the recent studies of magnetization dynamics and the role of angular momentum in thin films of ferrimagnetic rare-earth-transition metal (RE-TM) alloys, e.g. GdFeCo, where both magnetization and angular momenta are temperature dependent. It has been experimentally demonstrated that the magnetization can be manipulated and even reversed by a single 40 fs laser pulse, without any applied magnetic field. This switching is found to follow a novel reversal pathway, that is shown however to depend crucially on the net angular momentum, reflecting the balance of the two opposite sublattices. In particular, optical excitation of ferrimagnetic GdFeCo on a time scale pertinent to the characteristic time of the exchange interaction between the RE and TM spins, i.e. on the time scale of tens of femtoseconds, pushes the spin dynamics into a yet unexplored regime, where the two exchange-coupled magnetic sublattices demonstrate substantially different dynamics. As a result, the reversal of spins appears to proceed via a novel transient state characterized by a ferromagnetic alignment of the Gd and Fe magnetic moments, despite their ground-state antiferromagnetic coupling.Thus, optical manipulation of magnetic order by femtosecond laser pulses has developed into an exciting and still expanding research field that keeps being fueled by a continuous stream of new and sometimes counterintuitive results. Considering the progress in the development of plasmonic antennas and compact ultrafast lasers, optical control of magnetic order may also potentially revolutionize data storage and information processing technologies.

17.
Philos Trans A Math Phys Eng Sci ; 369(1951): 3631-45, 2011 Sep 28.
Article in English | MEDLINE | ID: mdl-21859726

ABSTRACT

The interaction of sub-picosecond laser pulses with magnetically ordered materials has developed into an extremely exciting research topic in modern magnetism. From the discovery of sub-picosecond demagnetization over a decade ago to the recent demonstration of magnetization reversal by a single 40 fs laser pulse, the manipulation of spins by ultrashort laser pulses has become a fundamentally challenging topic with a potentially high impact for future spintronics, data storage and manipulation, and quantum computation. We have recently demonstrated that one can generate ultrashort and very strong (teslas) magnetic field pulses via the so-called inverse Faraday effect. Such optically induced magnetic field pulses provide unprecedented means for the generation, manipulation and coherent control of spins on very short time scales. The basic ideas behind these so-called opto-magnetic effects will be discussed and illustrated with recent results, demonstrating the various possibilities of this new field of femto-magnetism.


Subject(s)
Lasers , Magnetics , Optics and Photonics , Electromagnetic Fields , Electronics , Light , Photons , Physics/methods , Temperature , Time Factors
18.
Phys Rev Lett ; 95(4): 047402, 2005 Jul 22.
Article in English | MEDLINE | ID: mdl-16090839

ABSTRACT

We demonstrate that intense laser pulses can be used to directly control the spins in ferrimagnetic garnet films. Through an ultrafast and nonthermal photomagnetic effect the magnetocrystalline anisotropy is modified to create a new long-lived equilibrium orientation for the magnetization. Simultaneously, the magnetization is rotated into this new state by precession in a strong transient optically generated magnetic field. All take place within the 100 fs duration of a single laser pulse, thus demonstrating the feasibility of photomagnetic switching on the femtosecond time scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...