Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
Appl Opt ; 63(1): 138-146, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38175014

ABSTRACT

The emerging field of silicon photonics has created a large need for Ph.D. photonic integrated circuit design engineers. Developing intuition for electromagnetic waves at the micron scale is a major challenge facing undergraduate and graduate students in photonics. Students often misapply lessons learned from macroscale ray optics to submicron waveguide modes in dielectric structures. In this work, key student misconceptions were identified and addressed in a research study using photonics training simulations. A learning module with interactive 3D vector field visualizations was deployed in a massive open online course to train the next generation of photonics design engineers.

2.
Appl Opt ; 63(2): POW1-POW2, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38227235

ABSTRACT

This feature issue highlights specific photonics and optics workforce challenges, opportunities for industry support, and state-of-the-art-training methods.

3.
Appl Opt ; 62(31): H1-H8, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38037917

ABSTRACT

The demand for skilled workers and novel manufacturing training solutions has increased with the growing demand for fiber optic cables. Web-based simulations can be used for training, and this paper presents an approach for developing a fiber preform manufacturing browser-based VR simulation. Subsequently, a study was conducted to evaluate the effectiveness of the simulation based on learning gains and learner perception of ease of use, usefulness, intention of use, learning outcomes, and workload. A mixed-methods between-subjects study with 63 participants found that the combination of lecture and simulation was significantly better for perceived usefulness and learning outcomes compared to lecture-only or lecture-and-video conditions.

4.
Appl Opt ; 62(31): H9-H16, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38037918

ABSTRACT

A roadblock to long-term growth of the photonics industry is the availability of well-trained, adaptable middle-skilled workers. This research characterizes the middle-skilled workforce gap, including the quantity required and skills needed. We estimate that 42,000 new technical middle-skilled workers are needed by 2030, requiring another 100 technician programs nationwide. Training skills along the supply chain are critical; programs must emphasize testing, troubleshooting, and process design. Middle-skilled workers trained in critical thinking will enable an adaptable workforce capable of handling technology evolution. Finally, recommendations for the academia, industry, and middle-skilled training ecosystem are included to ensure that the latter evolves with technology development.

5.
Opt Express ; 31(2): 2816-2832, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36785287

ABSTRACT

The co-packaging of optics and electronics provides a potential path forward to achieving beyond 50 Tbps top of rack switch packages. In a co-packaged design, the scaling of bandwidth, cost, and energy is governed by the number of optical transceivers (TxRx) per package as opposed to transistor shrink. Due to the large footprint of optical components relative to their electronic counterparts, the vertical stacking of optical TxRx chips in a co-packaged optics design will become a necessity. As a result, development of efficient, dense, and wide alignment tolerance chip-to-chip optical couplers will be an enabling technology for continued TxRx scaling. In this paper, we propose a novel scheme to vertically couple into standard 220 nm silicon on insulator waveguides from 220 nm silicon nitride on glass waveguides using overlapping, inverse double tapers. Simulation results using Lumerical's 3D Finite Difference Time Domain solver are presented, demonstrating insertion losses below -0.13 dB for an inter-chip spacing of 1 µm; 1 dB vertical and lateral alignment tolerances of approximately 2.6 µm and ± 2.8 µm, respectively; a greater than 300 nm 1 dB bandwidth; and 1 dB twist and tilt tolerances of approximately ± 2.3 degrees and 0.4 degrees, respectively. These results demonstrate the potential of our coupler for use in co-packaged designs requiring high performance, high density, CMOS compatible out of plane optical connections.

6.
Light Sci Appl ; 10(1): 130, 2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34140461

ABSTRACT

Optical pulses are fundamentally defined by their temporal and spectral properties. The ability to control pulse properties allows practitioners to efficiently leverage them for advanced metrology, high speed optical communications and attosecond science. Here, we report 11× temporal compression of 5.8 ps pulses to 0.55 ps using a low power of 13.3 W. The result is accompanied by a significant increase in the pulse peak power by 9.4×. These results represent the strongest temporal compression demonstrated to date on a complementary metal-oxide-semiconductor (CMOS) chip. In addition, we report the first demonstration of on-chip spectral compression, 3.0× spectral compression of 480 fs pulses, importantly while preserving the pulse energy. The strong compression achieved at low powers harnesses advanced on-chip device design, and the strong nonlinear properties of backend-CMOS compatible ultra-silicon-rich nitride, which possesses absence of two-photon absorption and 500× larger nonlinear parameter than in stoichiometric silicon nitride waveguides. The demonstrated work introduces an important new paradigm for spectro-temporal compression of optical pulses toward turn-key, on-chip integrated systems for all-optical pulse control.

7.
Opt Lett ; 46(10): 2324-2327, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33988574

ABSTRACT

We demonstrate a large-area fabrication process for optical metasurfaces utilizing reusable SiN on Si nanostencils. To improve the yield of the nanostencil fabrication, we partially etch the front-side SiN layer to transfer the metasurface pattern from the resist to the nanostencil membrane, preserving the integrity of the membrane during the subsequent potassium hydroxide etch. To enhance the reliability and resolution of metasurface fabrication using the nanostencil, we spin coat a sacrificial layer of resist to precisely determine the gap between the nanostencil and the metasurface substrate for the subsequent liftoff. 1.5 mm diameter PbTe meta-lenses on ${\rm{Ca}}{{\rm{F}}_2}$ fabricated using nanostencils show diffraction-limited focusing and focusing efficiencies of 42% for a 2 mm focal length lens and 53% for a 4 mm focal length lens. The nanostencils can also be cleaned using chemical cleaning methods for reuse.

8.
ACS Sens ; 5(7): 1996-2002, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32441524

ABSTRACT

Despite the recent emergence of microcavity resonators as label-free biological and chemical sensors, practical applications still require simple and robust methods to impart chemical selectivity and reduce the cost of fabrication. We introduce the use of hydrocarbon-in-fluorocarbon-in-water (HC/FC/W) double emulsions as a liquid top cladding that expands the versatility of optical resonators as chemical sensors. The all-liquid complex emulsions are tunable droplets that undergo dynamic and reversible morphological transformations in response to a change in the chemical environment (e.g., exposure to targeted analytes). This chemical-morphological coupling drastically modifies the effective refractive index, allowing the complex emulsions to act as a chemical transducer and signal amplifier. We detect this large change in the refractive index by tracking the shift of the enveloped resonant spectrum of a silicon nitride (Si3N4) racetrack resonator-based sensor, which correlates well with a change in the morphology of the complex droplets. This combination of soft materials (dynamic complex emulsions) and hard materials (on-chip resonators) provides a unique platform for liquid-phase, real-time, and continuous detection of chemicals and biomolecules for miniaturized and remote, environmental, medical, and wearable sensing applications.


Subject(s)
Optics and Photonics , Photons , Emulsions , Refractometry , Transducers
9.
Sci Rep ; 10(1): 6482, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32300139

ABSTRACT

Continuing demands for increased computing efficiency and communication bandwidth have pushed the current semiconductor technology to its limit. This led to novel technologies with the potential to outperform conventional electronic solutions such as photonic pre-processors or accelerators, electronic-photonic hybrid circuits, and neural networks. However, the efforts made to describe and predict the performance evolution of compute-performance fall short to accurately predict and thereby explain the actually observed development pace with time; that is all proposed metrics eventually deviate from their development trajectory after several years from when they were originally proposed. This discrepancy demands a figure-of-merit that includes a holistic set of driving forces of the compute-system evolution. Here we introduce the Capability-to-Latency-Energy-Amount-Resistance (CLEAR) metric encompassing synchronizing speed, energy efficiency, physical machine size scaling, and economic cost. We show that CLEAR is the only metric to accurately describe the historical compute-system development. We find that even across different technology options CLEAR matches the observed (post-diction) constant rate-of-growth, and also fits proposed future compute-system (prediction). Therefore, we propose CLEAR to serve as a guide to quantitatively predict required compute-system demands at a given time in the future.

10.
ACS Sens ; 4(3): 571-577, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30762345

ABSTRACT

We demonstrate the chemical characterization of aerosol particles with on-chip spectroscopy using a photonic cavity enhanced silicon nitride (Si3N4) racetrack resonator-based sensor. The sensor operates over a broad and continuous wavelength range, showing cavity enhanced sensitivity at specific resonant wavelengths. Analysis of the relative change in the quality factor of the cavity resonances successfully yields the absorption spectrum of the aerosol particles deposited on the resonators. Detection of N-methyl aniline-based aerosol in the near infrared (NIR) range of 1500 to 1600 nm is demonstrated. Our aerosol sensor spectral data compares favorably with that from a commercial spectrometer, indicating good accuracy. The small size of the device is advantageous in remote, environmental, medical, and body-wearable sensing applications.


Subject(s)
Photons , Spectrum Analysis/instrumentation , Aerosols , Equipment Design , Silicon Compounds/chemistry
11.
Opt Lett ; 42(17): 3454-3457, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28957061

ABSTRACT

We report that propagation loss of optical waveguides based on a silicon-on-insulator (SOI) material platform can be greatly reduced. Our simulations show that the loss, including SiO2 absorption and substrate leakage, but no scattering loss, is 0.024 and 0.53 dB/cm in the deep mid-infrared at 4.8 and 7.1 µm wavelengths, where the material absorption in SiO2 is 100 and 1000 dB/cm, respectively. The loss becomes negligible, compared to scattering loss in Si waveguides. This is enabled by using the TE10 mode in a pedestal waveguide. We also show that the TE10 mode can be excited in the proposed waveguide by the fundamental mode with a coupling efficiency of >94%. Low propagation loss, high coupling efficiency, and fabrication-friendly design would make it promising for practical use of SOI devices in the deep mid-infrared.

12.
Opt Express ; 25(14): 16116-16122, 2017 Jul 10.
Article in English | MEDLINE | ID: mdl-28789119

ABSTRACT

Ge-on-Si is an attractive material platform for mid-IR broadband sources on a chip because of its wide transparency window, high Kerr nonlinearity and CMOS compatibility. We present a low-loss Ge-on-Si waveguide with flat and low dispersion from 3 to 11 µm, which enables a coherent supercontinuum from 2 to 12 µm, generated using a sub-ps pulsed pump. We show that 700-fs pump pulses with a low peak power of 400 W are needed to generate such a wide supercontinuum, and the waveguide length is around 5.35 mm.

13.
Sci Rep ; 6: 39234, 2016 12 21.
Article in English | MEDLINE | ID: mdl-28000725

ABSTRACT

GeSbS ridge waveguides have recently been demonstrated as a promising mid - infrared platform for integrated waveguide - based chemical sensing and photodetection. To date, their nonlinear optical properties remain relatively unexplored. In this paper, we characterize the nonlinear optical properties of GeSbS glasses, and show negligible nonlinear losses at 1.55 µm. Using self - phase modulation experiments, we characterize a waveguide nonlinear parameter of 7 W-1/m and nonlinear refractive index of 3.71 × 10-18 m2/W. GeSbS waveguides are used to generate supercontinuum from 1280 nm to 2120 nm at the -30 dB level. The spectrum expands along the red shifted side of the spectrum faster than on the blue shifted side, facilitated by cascaded stimulated Raman scattering arising from the large Raman gain of chalcogenides. Fourier transform infrared spectroscopic measurements show that these glasses are optically transparent up to 25 µm, making them useful for short - wave to long - wave infrared applications in both linear and nonlinear optics.

14.
Opt Lett ; 41(21): 4939-4942, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27805655

ABSTRACT

We propose a new type of bilayer dispersion-flattened waveguides that have four zero-dispersion wavelengths. Low and flat dispersion can be achieved by using two different material combinations, with a much smaller index contrast as compared to the previously proposed slot-assisted dispersion-flattened waveguides. Without using a nano-slot, dispersion becomes less sensitive to waveguide dimensions, which is highly desirable for high-yield device fabrication. Ultra-low dispersion, high nonlinearity, and fabrication-friendly design would make it promising for practical implementation of nonlinear photonic functions. The proposed waveguide configuration deepens our understanding of the dispersion flattening principle.

15.
ACS Nano ; 10(12): 10716-10725, 2016 12 27.
Article in English | MEDLINE | ID: mdl-27754643

ABSTRACT

We have fabricated gradient-grafted nanofoam films that are able to record the presence of volatile chemical compounds in an offline regime. In essence, the nanofoam film (100-300 nm thick) is anchored to a surface cross-linked polymer network in a metastable extended configuration that can relax back to a certain degree upon exposure to a chemical vapor. The level of the chain relaxation is associated with thermodynamic affinity between the polymer chains and the volatile compounds. In our design, the chemical composition of the nanofoam film is not uniform; therefore, the film possesses a gradually changing local affinity to a vapor along the surface. Upon vapor exposure, the nonuniform changes in local film morphology provide a permanent record or "fingerprint" for the chemical event of interest. This permanent modification in the film structure can be directly detected via changes not only in the film surface profile but also in the film optical characteristics. To this end, we demonstrated that sensing/recording nanofoam films can be prepared and interrogated on the surfaces of optical waveguides, microring optical resonators. It is important that the initial surface profile and structure of the nanofoam film are encrypted by the distinctive conditions that were used to fabricate the film and practically impossible to replicate without prior knowledge.

16.
Opt Lett ; 41(13): 3053-6, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27367099

ABSTRACT

To support the use of integrated photonics in harsh environments, such as outer space, the hardness threshold to high-energy radiation must be established. Here, we investigate the effects of gamma (γ) rays, with energy in the MeV-range, on silicon photonic waveguides. By irradiation of high-quality factor amorphous silicon core resonators, we measure the impact of γ rays on the materials incorporated in our waveguide system, namely amorphous silicon, silicon dioxide, and polymer. While we show the robustness of amorphous silicon and silicon dioxide up to an absorbed dose of 15 Mrad, more than 100× higher than previous reports on crystalline silicon, polymer materials exhibit changes with doses as low as 1 Mrad.

17.
Opt Lett ; 41(8): 1764-7, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27082339

ABSTRACT

In this study, we numerically investigate the effect of Kerr-comb-generated breather soliton pulses on optical communication systems. The breather soliton pulse amplitude and spectrum envelope oscillate periodically in time. Simulations show that the spectrum of each comb line in the breather soliton state has multiple sub-teeth due to the periodic oscillation of the comb spectrum. In the simulation, the comb output is modulated with different formats. We find that the sub-teeth distort quadrature phase-shift-keyed signals but have less of an effect on on-off-keyed signals.

18.
Opt Express ; 23(14): 18665-70, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26191925

ABSTRACT

We investigate the impact of stimulated Raman scattering (SRS) and self-steepening (SS) on breather soliton dynamics in octave-spanning Kerr frequency comb generation. SRS and SS can transform chaotic fluctuations in cavity solitons into periodic breathing. Furthermore, with SRS and SS considered, bandwidth of the soliton breathes more than two times stronger. The simultaneous presence of SRS and SS also make the soliton breathe slower and degrades the coherence of the soliton.

19.
ACS Appl Mater Interfaces ; 7(21): 11189-94, 2015 Jun 03.
Article in English | MEDLINE | ID: mdl-25924561

ABSTRACT

A chip-scale mid-IR water sensor was developed using silicon nitride (SiN) waveguides coated with poly(glycidyl methacrylate) (PGMA). The label-free detection was conducted at λ=2.6-2.7 µm because this spectral region overlaps with the characteristic O-H stretch absorption while being transparent to PGMA and SiN. Through the design of a hybrid waveguide structure, we were able to tailor the mid-IR evanescent wave into the PGMA layer and the surrounding water and, consequently, to enhance the light-analyte interaction. A 7.6 times enhancement of sensitivity is experimentally demonstrated and explained by material integration engineering as well as waveguide mode analysis. Our sensor platform made by polymer-dielectric hybrids can be applied to other regions of the mid-IR spectrum to probe other analytes and can ultimately achieve a multispectral sensor on-a-chip.

20.
Opt Lett ; 39(21): 6126-9, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25361295

ABSTRACT

We analytically and numerically investigate the nonlinear conversion efficiency in ring microresonator-based mode-locked frequency combs under different dispersion conditions. Efficiency is defined as the ratio of the average round trip energy values for the generated pulse(s) to the input pump light. We find that the efficiency degrades with growth of the comb spectral width and is inversely proportional to the number of comb lines. It depends on the cold-cavity properties of a microresonator only and can be improved by increasing the coupling coefficient. Also, it can be increased in the multi-soliton state.

SELECTION OF CITATIONS
SEARCH DETAIL
...