Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 7136, 2019 May 09.
Article in English | MEDLINE | ID: mdl-31073200

ABSTRACT

Aluminum-based quasicrystals typically form across narrow composition ranges within binary to quaternary alloys, which makes their fabrication and characterization challenging. Here, we use combinatorial approaches together with fast characterization techniques to study a wide compositional range including known quasicrystal forming compositions. Specifically, we use magnetron co-sputtering to fabricate libraries of ~140 Al-Cu-Fe and ~300 Al-Cu-Fe-Cr alloys. The alloys compositions are measured through automated energy dispersive X-ray spectroscopy. Phase formation and thermal stability are investigated for different thermal processing conditions (as-sputtered and annealed at 400 °C, 520 °C and 600 °C for Al-Cu-Fe libraries; annealed at 600 °C for Al-Cu-Fe-Cr libraries) using automated X-ray diffraction and transmission electron microscopy. In both systems the compositional regions across which the quasicrystalline phase forms are identified. In particular, we demonstrate that the quasicrystalline phase forms across an unusually broad composition range in the Al-Cu-Fe-Cr system. Additionally, some of the considered alloys vitrify during sputtering, which also allows us to study their nucleation behavior. We find that phases with polytetrahedral symmetry, such as the icosahedral quasicrystal and the λ-Al13Fe4 phase, exhibit higher nucleation rates but lower growth rates, as compared to other phases with a lower degree of polytetrahedral order. Altogether, the here used combinatorial approach is powerful to identify compositional regions of quasicrystals.

2.
Materials (Basel) ; 11(11)2018 Nov 05.
Article in English | MEDLINE | ID: mdl-30400652

ABSTRACT

The composition of a commercial duplex stainless steel was modified with boron additions (3.5, 4.5, and 5.5 wt.%) and processed by rapid-quenching techniques: Melt-spinning, copper-mold casting, and high-velocity oxygen fuel (HVOF). Spray deposition was also used to produce alloys as the process may induce rapid-solidified-like microstructures. These processing routes led to microstructures with distinguished corrosion resistance. Among the alloys with different boron contents, the 63.5Fe25Cr7Ni4.5B composition enabled the production of fully amorphous ribbons by melt-spinning. The cooling rate experienced during copper-mold casting, high-velocity oxygen fuel, and spray deposition did not ensure complete amorphization. The crystalline phases thereby formed were (Fe,Cr)2B and (Fe,Mo)3B2 borides in an austenitic-matrix with morphology and refinement dependent of the cooling rates. Fully amorphous 63.5Fe25Cr7Ni4.5B ribbons exhibited outstanding corrosion resistance in chloride-rich alkaline and acid media with negligible corrosion current densities of about 10-8 A/cm² and a broad passivation plateau. Although the specimens of the same composition produced by HVOF process and spray deposition exhibited lower corrosion resistance because of intrinsic porosity and crystalline phases, their corrosion behaviors were superior to those of AISI 1045 steel used as substrate with the advantage to be reinforced with hard borides known to be resistant against wear.

3.
Sci Rep ; 8(1): 8600, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29872065

ABSTRACT

High Entropy Alloys (HEAs) are new classes of structural metallic materials that show remarkable property combinations. Yet, often times interesting compositions are still found by trial and error. Here we show an "Effective Atomic Radii for Strength" (EARS) methodology, together with different semi-empirical and first-principle models, can be used to predict the extent of solid solution strengthening to discover and design new HEAs with unprecedented properties. We have designed a Cr45Ni27.5Co27.5 alloy with a yield strength over 50% greater with equivalent ductility than the strongest HEA (Cr33.3Ni33.3Co33.3) from the CrMnFeNiCo family reported to date. We show that values determined by the EARS methodology are more physically representative of multicomponent concentrated solid solutions. Our methodology permits high throughput, property-driven discovery and design of HEAs, enabling the development of future high-performance advanced materials for extreme environments.

4.
Small ; 6(14): 1543-9, 2010 Jul 19.
Article in English | MEDLINE | ID: mdl-20578115

ABSTRACT

Periodic arrays of micrometer-sized ferromagnetic structures with perpendicular magnetic anisotropy are prepared by nanoindentation at the surface of a Fe(67.7)B(20)Cr(12)Nb(0.3) glassy ribbon initially showing in-plane magnetic anisotropy. The indented regions exhibit enhanced coercivity and saturation magnetization with respect to the surrounding nondeformed matrix. These effects are due to a mechanically driven selective nanocrystallization of the metallic glass, induced by nanoindentation, even without the need for thermal annealing. In addition, while the amorphous matrix becomes paramagnetic above 325 K, the crystallized regions (consisting of alpha-Fe) remain ferromagnetic upon heating to high temperatures. The local change in the magnetic anisotropy direction is ascribed to a certain degree of crystallographic texture, together with the inverse magnetostriction effect caused by the compressive indentation stresses.


Subject(s)
Crystallization , Glass , Magnetics , Metals , Nanostructures
SELECTION OF CITATIONS
SEARCH DETAIL
...