Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38664007

ABSTRACT

We found that the culture broth of fungi showed anti-fungal activity against multidrug-sensitive budding yeast. However, we could not identify the anti-fungal compound due to the small quantity. Therefore, we attempted to increase the productivity of the target compound by the introduction of a global secondary metabolism regulator, laeA to the strain, which led to the successful isolation of ten-folds greater amount of MS-347a (1) than Aspergillus sp. FKI-5362. Compound 1 was not effective against Candida albicans and the detailed anti-fungal activity of 1 remains unverified. After our anti-fungal activity screening, 1 was found to inhibit the growth of broad plant pathogenic fungal species belonging to the Ascomycota. It is noteworthy that 1 showed little insecticidal activity against silkworms, suggesting its selective biological activity against plant pathogenic fungi. Our study implies that the combination strategy of multidrug-sensitive yeast and the introduction of laeA is useful for new anti-fungal drug discovery.

2.
Proc Natl Acad Sci U S A ; 121(17): e2322363121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38640341

ABSTRACT

Anti-microbial resistance (AMR) is one of the greatest threats to global health. The continual battle between the emergence of AMR and the development of drugs will be extremely difficult to stop as long as traditional anti-biotic approaches are taken. In order to overcome this impasse, we here focused on the type III secretion system (T3SS), which is highly conserved in many Gram-negative pathogenic bacteria. The T3SS is known to be indispensable in establishing disease processes but not essential for pathogen survival. Therefore, T3SS inhibitors may be innovative anti-infective agents that could dramatically reduce the evolutionary selective pressure on strains resistant to treatment. Based on this concept, we previously identified a polyketide natural product, aurodox (AD), as a specific T3SS inhibitor using our original screening system. However, despite its promise as a unique anti-infective drug of AD, the molecular target of AD has remained unclear. In this paper, using an innovative chemistry and genetic biology-based approach, we show that AD binds to adenylosuccinate synthase (PurA), which suppresses the production of the secreted proteins from T3SS, resulting in the expression of bacterial virulence both in vitro and in vivo experiments. Our findings illuminate the potential of PurA as a target of anti-infective drugs and vaccination and could open a avenue for application of PurA in the regulation of T3SS.


Subject(s)
Aurodox , Type III Secretion Systems , Type III Secretion Systems/metabolism , Aurodox/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gram-Negative Bacteria/metabolism , Bacterial Proteins/metabolism
3.
ACS Omega ; 9(15): 17415-17422, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38645345

ABSTRACT

Utilizing a binding mode-based physicochemical screening method using d-Ala-d-Ala silica gel, two new macrolactams, named banglactams A (1) and B (2), were discovered from the culture broth of Nonomuraea bangladeshensis K18-0086. In the course of our investigation, we found that d-Ala-d-Ala silica gel precisely differentiated the chemical structures of banglactams and separated them. However, we were not able to obtain enough of 1 to elucidate the structure due to its instability and insolubility. To overcome this challenge, we chemically modified 1 to improve solubility, enabling us to obtain a sufficient material supply for the indirect determination of the structure. Antibacterial activity evaluation of banglactams revealed that 1 binding to d-Ala-d-Ala silica gel exhibited antibacterial activity against Staphylococcus aureus; however, this was not the case with 2. This research indicates the utility of our original binding mode-based PC screening method, and the combination strategy of PC and chemical modifications led us to discover novel antibacterial compounds.

4.
J Antibiot (Tokyo) ; 77(5): 331-333, 2024 May.
Article in English | MEDLINE | ID: mdl-38467778

ABSTRACT

The emergence and spread of antimicrobial resistance are global threats. Pseudomonas aeruginosa (P. aeruginosa) is responsible for a substantial proportion of this global health issue because of its intrinsic resistance to many antibiotics due to the impermeability of its outer membrane and its multidrug efflux pump systems. Therefore, therapeutic drugs are limited, and the development of new drugs is extremely challenging. As an alternative approach, we focused on a combinational treatment strategy and found that 5-O-mycaminosyltylonolide (OMT) showed potent antibacterial activity against P. aeruginosa in the presence of an efflux pump inhibitor, phenylalanine-arginine beta-naphthylamide (PAßN). In this report, we prepared a PAßN derivative and compared the potentiation activity of OMT by PAßNs against multidrug-resistant P. aeruginosa clinical isolates.


Subject(s)
Anti-Bacterial Agents , Dipeptides , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Tylosin/analogs & derivatives , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Dipeptides/pharmacology , Dipeptides/chemistry , Drug Synergism , Humans
5.
J Antibiot (Tokyo) ; 77(3): 185-188, 2024 03.
Article in English | MEDLINE | ID: mdl-38177698

ABSTRACT

Antimicrobial resistance (AMR) causes a global health threat and enormous damage for humans. Among them, Methicillin-resistant Staphylococcus aureus (MRSA) resistant to first-line therapeutic ß-lactam drugs such as meropenem (MEPM) is problematic. Therefore, we focus on combination drug therapy and have been seeking new potentiators of MEPM to combat MRSA. In this paper, we report the isolation of phomoidrides A-D and its new analog, phomoidride H along with a polyketide compound, oxasetin from the culture broth of Neovaginatispora clematidis FKI-8547 strain as potentiators of MEPM against MRSA.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Pyrroles , Humans , Anti-Bacterial Agents/pharmacology , beta-Lactams/pharmacology , Naphthalenes , Meropenem/pharmacology , Microbial Sensitivity Tests
6.
Org Lett ; 26(3): 597-601, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38198624

ABSTRACT

Fusaramin (1) was isolated as a mitochondrial inhibitor. However, the fungal producer stops producing 1, which necessitates us to supply 1 by total synthesis. We proposed the complete stereochemical structure based on the biosynthetic pathway of sambutoxin. We have established concise and robust total synthesis of 1, enabling us to determine the complete stereochemical structure and to elucidate the structure-activity relationship, and uncover the hidden antiplant pathogenic fungal activity.


Subject(s)
Anti-Infective Agents , Fungi , Anti-Infective Agents/chemistry , Structure-Activity Relationship , Mycotoxins/chemistry
7.
Chem Biodivers ; 21(2): e202301834, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38179845

ABSTRACT

We discovered a new tetronomycin analog, C-32-OH tetronomycin (2) from the Streptomyces sp. K20-0247 strain, which produces tetronomycin (1). After NMR analysis of 2, we determined the planar structure. Futhermore, the absolute stereochemistry of 2 was deduced based on the biosynthetic pathway of 1 in the K20-0247 strain and a comparison of experimental electronic circular dichroism (ECD) results of 1 with 2. While 2 exihibits potent antibacterial activity aganist Gram-positive baceria including vancomycin-intermediate Staphylococcus aureus (VISA) strains and vancomycin-resistant Enterococci (VRE), the antibacterial activity of 2 shows 16-32-folds weaker than that of 1 suggesting that the C-34 methyl group in 1 is one of the very important functinal group. Moreover, we evaluated the ionophore activity of 1 and 2 and neither compound shows ionophore activity at reasonable concetrations. Our research suggests that 1 and 2 would have different target(s) from an ionophore mechanism in the antibacterial activity and tetronomycins are promising natural products for broad-spectrum antibiotics.


Subject(s)
Anti-Bacterial Agents , Ethers , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria , Ionophores , Microbial Sensitivity Tests
8.
ACS Omega ; 8(42): 39035-39040, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37901494

ABSTRACT

Vancomycin is a potent and broad-spectrum antibiotic that binds to the d-Ala-d-Ala moiety of the growing bacterial cell wall and kills bacteria. This fascinating binding model prompted us to design and synthesize d-Ala-d-Ala silica gels for the establishment of a new physicochemical (PC) screening method. In this report, we confirmed that vancomycin binds to d-Ala-d-Ala silica gel and can be eluted with MeOH containing 50 mM TFA. Finally, d-Ala-d-Ala silica gel enables to purify vancomycin from the culture broth of a vancomycin-producing strain, Amycolatopsis orientalis.

9.
J Antibiot (Tokyo) ; 76(10): 592-597, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37468747

ABSTRACT

A new peptide, emblestatin (1), was discovered from a culture broth of Embleya scabrispora K20-0267. This strain was isolated from soil using an agar medium containing lysozyme. Based on NMR and mass spectrometric analyses, 1 consists of 2-(2-hydroxyphenyl)-2-oxazoline, ß-alanine, glutamine, Nα-methyl-Nω-hydroxyornithine and 3-amino-1-hydroxy-2-piperidone moieties. Further analysis using the advanced Marfey's method revealed that all amino acids with the stereogenic α-carbon in 1 had the L configuration. Compound 1 exhibited iron chelating activity and weak antibacterial activity against Proteus vulgaris and Staphylococcus aureus.

10.
ACS Infect Dis ; 9(8): 1602-1609, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37418000

ABSTRACT

Luminamicin (1) isolated in 1985, is a macrodiolide compound exhibiting selective antibacterial activity against anaerobes. However, the antibacterial activity of 1 was not fully examined. In this research, re-evaluation of the antibacterial activity of 1 revealed that 1 is a narrow spectrum and potent antibiotic againstClostridioides difficile(C. difficile) and effective against fidaxomicin resistantC. difficilestrain. This prompted us to obtain luminamicin resistantC. difficilestrains for the determination of the molecular target of 1 inC. difficile. Sequence analysis of 1-resistantC. difficileindicated that the mode of action of 1 differs from that of fidaxomicin. This is because no mutation was observed in RNA polymerase and mutations were observed in a hypothetical protein and cell wall protein. Furthermore, we synthesized derivatives from 1 to study the structure-activity relationship. This research indicated that the maleic anhydride and the enol ether moieties seem to be pivotal functional groups to maintain the antibacterial activity againstC. difficileand the 14-membered lactone may contribute to taking an appropriate molecular conformation.

11.
J Antibiot (Tokyo) ; 76(8): 499-501, 2023 08.
Article in English | MEDLINE | ID: mdl-37208456

ABSTRACT

The emergence and spread of antimicrobial resistant pathogens continue to threaten our ability to combat several infections. Among them, Pseudomonas aeruginosa (P. aeruginosa) poses a major threat to human health. P. aeruginosa has intrinsic resistance to many antibiotics due to the impermeability of its outer membrane and a resistance-nodulation-cell division type multidrug efflux pump system. Therefore, only limited therapeutic drugs are effective against the pathogen. To address this problem, we have recently discovered an overlooked anti- P. aeruginosa compound, 5-O-mycaminosyltylonolide (OMT) from the Omura Natural Compound library using an efflux pump deletion P. aeruginosa mutant strain, YM64. In this report, we aim to demonstrate the promising potential of OMT for as a novel anti- P. aeruginosa compound and performed combination assays of OMT with polymyxin B nonapeptide, an example of a permeabilizing agent, against multi-drug resistant P. aeruginosa clinical isolates.


Subject(s)
Macrolides , Pseudomonas aeruginosa , Humans , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Macrolides/pharmacology , Microbial Sensitivity Tests , Polymyxin B/pharmacology
12.
ACS Omega ; 8(12): 11556-11563, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37008151

ABSTRACT

Tetronomycin (1), first isolated from a cultured broth of Streptomyces sp. by Juslen et al. in 1974, is a polycyclic polyether compound. However, the biological activity of 1 has not been thoroughly examined. In this study, we found that 1 exhibits more potent antibacterial activity than two well-known antibacterial drugs (vancomycin and linezolid) and is effective against several drug-resistant clinical isolates including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. Furthermore, we reassigned the 13C NMR spectra of 1 and performed a preliminary structure-activity relationship study of 1 to synthesize a chemical probe for target identification, which implied different targets based on its ionophore activity.

13.
J Antibiot (Tokyo) ; 76(6): 316-323, 2023 06.
Article in English | MEDLINE | ID: mdl-36991235

ABSTRACT

Limited microbial genera such as Streptomyces have served as sources of natural products (NPs), whereas most others have been less investigated. The vast accumulation of genomic data available in the NCBI database enables us to bioinformatically estimate the ability of other microbial groups to produce NPs. We analyzed 21,052 complete bacterial genome sequences using antiSMASH and compared the average numbers of biosynthetic gene clusters (BGCs) related to polyketides, non-ribosomal peptides, and/or terpenes biosynthesis at the genus level. Our bioinformatic analyses showed that Tumebacillus has 5-15 BGCs and is a promising NP producer. We searched for NPs from the culture broth of Tumebacillus permanentifrigoris JCM 14557T and found two novel compounds (tumebacin with anti-Bacillus activity and tumepyrazine) and identified two known compounds. Our results highlight the diversity of sources of NPs awaiting discovery.


Subject(s)
Biological Products , Bacteria/genetics , Genomics/methods , Computational Biology , Multigene Family
14.
J Antibiot (Tokyo) ; 76(5): 301-303, 2023 05.
Article in English | MEDLINE | ID: mdl-36964398

ABSTRACT

Antimicrobial resistance is a serious, worldwide problem. Pseudomonas aeruginosa (P. aeruginosa) is the pathogen that poses a major threat to human health. However, resistance-nodulation-cell division type multidrug efflux pump systems defend P. aeruginosa from many antibiotics. Therefore, only limited therapeutic drugs are available. In this regard, we screened overlooked anti- P. aeruginosa compounds from the Omura Natural Compound library using an efflux pump deletion P. aeruginosa mutant strain, YM64, which led us to find a semisynthetic macrolide, 5-O-mycaminosyltylonolide, whose anti- P. aeruginosa activity against a standard laboratory adapted strain, PAO1, was enhanced by an efflux pump inhibitor, phenylalanine-arginine beta-naphthylamide.


Subject(s)
Macrolides , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/genetics , Macrolides/pharmacology , Membrane Transport Proteins , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
15.
J Agric Food Chem ; 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36786603

ABSTRACT

In this report, we disclose our discovery of a new antifungal natural product, sakurafusariene (1), from an in-house fractionated library of the culture broth of Fusarium sp. FKI-7550 strain by using a combination strategy of multidrug-sensitive yeast and chemical modification. Throughout our investigation, we encountered challenges in the isolation of natural product 1. A chemical modification strategy via alkylation of 1 allowed for removal of the impurities enabling us to elucidate the structure of 1. Furthermore, we synthesized ester derivatives using a method inspired by the isolation study of 1, which gave us valuable information to understand a preliminary structure-activity relationship against Pyricularia oryzae growth inhibitory activity.

16.
J Am Chem Soc ; 144(50): 23148-23157, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36487183

ABSTRACT

This article describes the first total synthesis of luminamicin using a strategy combining chemical degradation with synthesis. Chemical degradation studies provided a sense of the inherent reactivity of the natural product, and deconstruction of the molecule gave rise to a key intermediate, which became the target for chemical synthesis. The core structure of the southern part of luminamicin was constructed by a 1,6-oxa-Michael reaction to form an oxa-bridged ring, followed by coupling with a functionalized organolithium species. Modified Shiina macrolactonization conditions forged the strained 10-membered lactone containing a tri-substituted olefin. Diastereoselective α-oxidation of the 10-membered lactone completed the center part to provide the key intermediate. Inspired by the degradation study, an unprecedented enol ether/maleic anhydride moiety was constructed with a one-pot chlorosulfide coupling and thiol ß-elimination sequence. Finally, macrolactonization to the 14-membered ring in the presence of the highly electrophilic maleic anhydride moiety was accomplished using modified Mukaiyama reagents to complete the synthesis of luminamicin.


Subject(s)
Anti-Bacterial Agents , Maleic Anhydrides , Lactones/chemistry , Alkenes/chemistry , Stereoisomerism
17.
Biosci Biotechnol Biochem ; 86(7): 949-954, 2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35511213

ABSTRACT

Most natural products derived from microorganisms have been sought from actinomycetes and filamentous fungi. As an attempt to develop new microbial resources in the exploratory research for natural products, we searched for new compounds from unexploited microbial taxa presumed to have biosynthetic gene clusters. A new compound confluenine G (1) and a known compound (2Z)-2-octyl-2-pentenedioic acid (2) were isolated from a cultured broth of basidiomycetous yeast, Moesziomyces sp. FKI-9540, derived from the gut of a moth Acherontia lachesis (Lepidoptera, Sphingidae). Based on the results of HR-ESI-MS and NMR analyses, the planar structure of 1 was elucidated. Confluenine G (1) was a new analog of nitrogen-oxidized isoleucine and had rare substructures with oxime and hydroxamic acid in molecule.


Subject(s)
Biological Products , Lepidoptera , Moths , Ustilaginales , Viperidae , Animals , DNA, Fungal , Moths/genetics , Yeasts
18.
Bioorg Med Chem Lett ; 69: 128779, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35545199

ABSTRACT

Aurodox was originally isolated in 1972 as a linear polyketide compound exhibiting antibacterial activity against Gram-positive bacteria. We have since identified aurodox as a specific inhibitor of the bacterial type III secretion system (T3SS) using our original screening system for inhibition of T3SS-mediated hemolysis in enteropathogenic Escherichia coli (EPEC). In this research, we synthesized 15 derivatives of aurodox and evaluated EPEC T3SS inhibitory activity as well as antibacterial activity against EPEC. One of the derivatives was highly selective for T3SS inhibition, equivalent to that of aurodox, but without exhibiting antibacterial activity (69-fold selectivity). This work revealed the structure-activity relationship for the inhibition of T3SS by aurodox and suggests that the target of T3SS is distinct from the target for antibacterial activity.


Subject(s)
Aurodox , Enteropathogenic Escherichia coli , Escherichia coli Proteins , Anti-Bacterial Agents/pharmacology , Aurodox/pharmacology , Structure-Activity Relationship , Type III Secretion Systems
19.
J Ind Microbiol Biotechnol ; 48(9-10)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-34343309

ABSTRACT

Two new tetramic acid derivatives, traminines A (1) and B (2), were isolated from a culture broth of Fusarium concentricum FKI-7550 by bioassay-guided fractionation using multidrug-sensitive Saccharomyces cerevisiae 12geneΔ0HSR-iERG6. The chemical structures of 1 and 2 were elucidated by NMR studies. Compounds 1 and 2 inhibited the growth of the multidrug-sensitive yeast strain on nonfermentable medium containing glycerol, but not on fermentable medium containing glucose. These results strongly suggest that they target mitochondrial machineries presiding over ATP production via oxidative phosphorylation. Throughout the assay monitoring overall ADP-uptake/ATP-release in yeast mitochondria, 1 and 2 were shown to inhibit one or more enzymes involving oxidative phosphorylation. Based on biochemical characterization, we found that the interference with oxidative phosphorylation by 1 is attributable to the dual inhibition of complex III and FoF1-ATPase, whereas that by 2 is solely due to the inhibition of complex III.


Subject(s)
Fusarium , Saccharomyces cerevisiae , Mitochondria/metabolism , Oxidative Phosphorylation
20.
J Antibiot (Tokyo) ; 74(11): 817-820, 2021 11.
Article in English | MEDLINE | ID: mdl-34334788

ABSTRACT

A new insecticidal meroterpenoid, named sesquicillin F (1), has been isolated from a culture broth of Mariannaea macrochlamydospora FKI-4735, together with 4-hydroxy-5,6-dimethylpyran-2-one (2). Compounds 1 and 2 were insecticidally active against Halyomorpha halys at 1 ppm.


Subject(s)
Hypocreales/chemistry , Insecticides/toxicity , Animals , Insecta , Insecticides/chemistry , Japan , Microbial Sensitivity Tests , Molecular Conformation , Soil Microbiology , Terpenes/pharmacology , Terpenes/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...