Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr D Biol Crystallogr ; 57(Pt 1): 61-8, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11134928

ABSTRACT

The dynamic response of tetragonal lysozyme crystals to dehydration has been characterized in situ using a combination of X-ray topography, high-resolution diffraction line-shape measurements and conventional crystallographic diffraction. For dehydration from 98% relative humidity (r.h.) to above 89%, mosaicity and diffraction resolution show little change and X-ray topographs remain featureless. Lattice constants decrease rapidly but the lattice-constant distribution within the crystal remains very narrow, indicating that water concentration gradients remain very small. Near 88% r.h., the c-axis lattice parameter decreases abruptly, the steady-state mosaicity and diffraction resolution degrade sharply and topographs develop extensive contrast. This transformation exhibits metastability and hysteresis. At fixed r.h. < 88% it is irreversible, but the original order can be almost completely restored by rehydration. These results suggest that this transformation is a first-order structural transition involving an abrupt loss of crystal water. The front between transformed and untransformed regions may propagate inward from the crystal surface and the resulting stresses along the front may degrade mosaicity. Differences in crystal size, shape and initial perfection may produce the observed variations in degradation timescale. Consequently, the success of more general post-growth treatments may often involve identifying procedures that either avoid lattice transitions, minimize disorder created during such transitions or maintain the lattice in an ordered metastable state.


Subject(s)
Muramidase/chemistry , Crystallography, X-Ray , Humidity , Protein Conformation
2.
Proteins ; 36(3): 270-81, 1999 Aug 15.
Article in English | MEDLINE | ID: mdl-10409821

ABSTRACT

The mechanisms by which macromolecular impurities degrade the diffraction properties of protein crystals have been investigated using X-ray topography, high-resolution diffraction line shape measurements, crystallographic data collection, chemical analysis, and two-photon excitation fluorescence microscopy. Hen egg-white lysozyme crystals grown from solutions containing a structurally unrelated protein (ovotransferrin) and a related protein (turkey egg-white lysozyme) can exhibit significantly broadened mosaicity due to formation of cracks and dislocations but have overall B factors and diffraction resolutions comparable to those of crystals grown from uncontaminated lysozyme. Direct fluorescence imaging of the three-dimensional impurity distribution shows that impurities incorporate with different densities in sectors formed by growth on different crystal faces, and that impurity densities in the crystal core and along boundaries between growth sectors can be much larger than in other parts of the crystal. These nonuniformities create stresses that drive formation of the defects responsible for the mosaic broadening. Our results provide a rationale for the use of seeding to obtain high-quality crystals from heavily contaminated solutions and have implications for the use of crystallization for protein purification. Proteins 1999;36:270-281.


Subject(s)
Proteins/isolation & purification , Animals , Chickens , Conalbumin/isolation & purification , Crystallization , Crystallography, X-Ray , Drug Contamination , Macromolecular Substances , Microscopy, Fluorescence , Muramidase/isolation & purification , Muramidase/standards , Proteins/standards , Quality Control , Turkeys
SELECTION OF CITATIONS
SEARCH DETAIL
...