Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Med Chem ; 15(6): 2146-2159, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38911172

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of coronavirus disease (COVID-19) since its emergence in December 2019. As of January 2024, there has been over 774 million reported cases and 7 million deaths worldwide. While vaccination efforts have been successful in reducing the severity of the disease and decreasing the transmission rate, the development of effective therapeutics against SARS-CoV-2 remains a critical need. The main protease (Mpro) of SARS-CoV-2 is an essential enzyme required for viral replication and has been identified as a promising target for drug development. In this study, we report the identification of novel Mpro inhibitors, using a combination of deep reinforcement learning for de novo drug design with 3D pharmacophore/shape-based alignment and privileged fragment match count scoring components followed by hit expansions and molecular docking approaches. Our experimentally validated results show that 3 novel series exhibit potent inhibitory activity against SARS-CoV-2 Mpro, with IC50 values ranging from 1.3 µM to 2.3 µM and a high degree of selectivity. These findings represent promising starting points for the development of new antiviral therapies against COVID-19.

2.
Chimia (Aarau) ; 71(10): 667-677, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-29070412

ABSTRACT

In this case study on an essential instrument of modern drug discovery, we summarize our successful efforts in the last four years toward enhancing the Actelion screening compound collection. A key organizational step was the establishment of the Compound Library Committee (CLC) in September 2013. This cross-functional team consisting of computational scientists, medicinal chemists and a biologist was endowed with a significant annual budget for regular new compound purchases. Based on an initial library analysis performed in 2013, the CLC developed a New Library Strategy. The established continuous library turn-over mode, and the screening library size of 300'000 compounds were maintained, while the structural library quality was increased. This was achieved by shifting the selection criteria from 'druglike' to 'leadlike' structures, enriching for non-flat structures, aiming for compound novelty, and increasing the ratio of higher cost 'Premium Compounds'. Novel chemical space was gained by adding natural compounds, macrocycles, designed and focused libraries to the collection, and through mutual exchanges of proprietary compounds with agrochemical companies. A comparative analysis in 2016 provided evidence for the positive impact of these measures. Screening the improved library has provided several highly promising hits, including a macrocyclic compound, that are currently followed up in different Hit-to-Lead and Lead Optimization programs. It is important to state that the goal of the CLC was not to achieve higher HTS hit rates, but to increase the chances of identified hits to serve as the basis of successful early drug discovery programs. The experience gathered so far legitimates the New Library Strategy.


Subject(s)
Drug Discovery , Drug Evaluation, Preclinical , Algorithms , High-Throughput Screening Assays , Small Molecule Libraries
3.
J Med Chem ; 60(9): 3755-3775, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28406299

ABSTRACT

Our strategy to combat resistant bacteria consisted of targeting the GyrB/ParE ATP-binding sites located on bacterial DNA gyrase and topoisomerase IV and not utilized by marketed antibiotics. Screening around the minimal ethyl urea binding motif led to the identification of isoquinoline ethyl urea 13 as a promising starting point for fragment evolution. The optimization was guided by structure-based design and focused on antibacterial activity in vitro and in vivo, culminating in the discovery of unprecedented substituents able to interact with conserved residues within the ATP-binding site. A detailed characterization of the lead compound highlighted the potential for treatment of the problematic fluoroquinolone-resistant MRSA, VRE, and S. pneumoniae, and the possibility to offer patients an intravenous-to-oral switch therapy was supported by the identification of a suitable prodrug concept. Eventually, hERG K-channel block was identified as the main limitation of this chemical series, and efforts toward its minimization are reported.


Subject(s)
Anti-Bacterial Agents/pharmacology , Isoquinolines/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Area Under Curve , Drug Discovery , Gram-Negative Bacteria/drug effects , Half-Life , Hydrogen Bonding , Isoquinolines/chemistry , Isoquinolines/pharmacokinetics , Isoquinolines/therapeutic use , Microbial Sensitivity Tests , Potassium Channels/drug effects , Rats , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , Solubility , Urea/chemistry
4.
Chem Biol ; 16(7): 724-35, 2009 Jul 31.
Article in English | MEDLINE | ID: mdl-19635409

ABSTRACT

Screening of one-bead one-compound libraries by incubating beads with fluorescently labeled target protein requires isolation and structure elucidation of a large number of primary hit beads. However, the potency of the identified ligands is only revealed after time consuming and expensive larger scale resynthesis and testing in solution. Often, many of the resynthesized compounds turn out to be weak target binders in solution due to large differences between surface and solution binding affinities. For an industry style high-throughput screening (HTS) process a high false positive rate is detrimental. We have therefore combined single bead and single molecule/single cell techniques into an integrated HTS process in which the picomole amount of substance contained on one isolated hit bead is sufficient for quality control, structure determination, and precise affinity determination to the target protein in solution.


Subject(s)
Drug Evaluation, Preclinical/methods , Drug Discovery/methods , Fluorescence , Ligands , Methods , Microspheres , Molecular Probe Techniques , Small Molecule Libraries
5.
Chembiochem ; 10(6): 994-8, 2009 Apr 17.
Article in English | MEDLINE | ID: mdl-19267375

ABSTRACT

New and improved: The incorporation of a 6-chlorotryptophan (6-Cl-Trp) into a beta-peptide (M)-3(14) helix leads to a high-affinity hDM2 inhibitor, as demonstrated by fluorescence fluctuation analysis at single molecule resolution. When conjugated to penetratin, the newly derived hDM2 binder specifically inhibits tumour cell growth in vitro.


Subject(s)
Peptides/metabolism , Peptides/pharmacology , RNA-Binding Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Amino Acid Sequence , Animals , Biomimetic Materials/chemical synthesis , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Biomimetic Materials/pharmacology , Cell Line, Tumor , Drug Design , Humans , Ligands , Mice , Models, Molecular , Peptides/chemical synthesis , Peptides/chemistry , Protein Binding/drug effects , Protein Structure, Secondary , Tumor Suppressor Protein p53/chemistry
7.
Chem Biodivers ; 1(11): 1812-28, 2004 Nov.
Article in English | MEDLINE | ID: mdl-17191818

ABSTRACT

The solid-phase synthesis and an ADME investigation with albino and pigmented male rats of the doubly 14C-labelled beta/alpha-tetrapeptide derivative Ac-beta3 hTyr-(D)Trp-beta3 hLys-beta3 hThr-lactone (3; Fig. 3) are described. After intravenous (i.v.) and peroral (p.o.) administration of the peptide, its concentration in blood and plasma, its tissue distribution, and the metabolism and the excretion of the peptide were analyzed over a period of up to 7 days post dose. The tetrapeptide in its ring opened form, 5, has a bioavailability of ca. 25%; radioactivity is distributed in the animals in an organ-specific way, and the compound appears to pass the blood-brain barrier to a very small extent, if at all (Tables 1-3 and Figs. 2-6). Excretion (37% renal, 44% fecal, including biliary) of the tetrapeptide 4 days after i.v. administration is almost complete, with only 4.3% remaining in the carcass; 4 days after p.o. administration 97% of the dose has been excreted in the feces. Radiochromatograms taken of plasma (0.5 and 24 h after i.v. dosing) and of urine and feces extracts (0-48 h collected) reveal the presence of lactone 3 and/or the corresponding hydroxy acid 5 with essentially no or very minor other peaks, respectively, representing possible metabolites (Tables 4-6, and Fig. 7 and 8). A comparison with a previous ADME investigation of a beta-nonapeptide show that--except for the lack of metabolism--all aspects of exposure, distribution, and elimination are different (structure-specific properties). The investigated tetrapeptide 3 is a potent and highly specific agonist of the somatostatin receptor hsst4, rendering the results described herein promising for diagnostic and therapeutic applications of beta-peptides.


Subject(s)
Oligopeptides/chemistry , Oligopeptides/pharmacokinetics , Animals , Carbon Radioisotopes/chemistry , Carbon Radioisotopes/pharmacokinetics , Male , Metabolic Clearance Rate/physiology , Rats , Tissue Distribution/physiology
8.
Chem Biodivers ; 1(9): 1391-400, 2004 Sep.
Article in English | MEDLINE | ID: mdl-17191917

ABSTRACT

The tripeptide H-Val-Ala-Leu-OH and the N-Ac-tetrapeptide amide Ac-Thr-Lys-Trp-Phe-NH2, and their beta-peptidic counterparts H-beta(3)hVal-beta(3)hAla-beta(3)hLeu-OH and Ac-beta(3)hThr-(S)beta(2)hLys-beta(3)hTrp-beta(3)hPhe-NH2, respectively, have been injected into Heliothis virescens larvae and added to cell cultures of black mexican sweet maize. The body liquids of the larvae and the supernatant of the plant cell cultures were sampled 0, 2, 3, 6, 17, and/or 24 h after application and analyzed by LC/MS. While the two alpha-peptides were degraded rapidly in these environments, the concentration of the beta-peptides was found to decrease very slowly. Thus, ca. 60% of the original amount of the beta-tetrapeptide was detected in the liquids of the insect after 24 h. The plant cells did not seem to make use of the beta-peptides at all, whereas, the alpha-tripeptide completely disappeared from the supernatant after 3 h. Thus, we have demonstrated, for the first time, the high stability of beta-peptides against degradation and metabolism in an insect and a plant. Especially remarkable is the persistence of the beta-tetrapeptide with its functionalised and, thus, 'metabolisable' side chains of Thr, Lys, Trp, and Phe in the insect larvae, which are known to have a high level of activity of oxidizing enzymes. The results described here match those of ADME investigations with radioactively labeled beta-peptides in rats, where essentially complete stability has been observed, while environmental microorganisms have been found to biodegrade beta-peptides, albeit slowly. Possible implications of these findings for biomedical and pest-control applications are proposed.


Subject(s)
Moths/metabolism , Peptide Fragments/metabolism , Zea mays/cytology , Zea mays/metabolism , Animals , Cells, Cultured , Insecta/metabolism
9.
Naunyn Schmiedebergs Arch Pharmacol ; 367(2): 95-103, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12595949

ABSTRACT

Four linear beta(2)/beta(3)-di- and alpha/beta(3)-tetrapeptides (1-4) were investigated as somatostatin sst(4) receptor agonists on recombinant human and mouse somatostatin receptors. Human somatostatin receptor subtypes 1-5 (sst(1-5)), and mouse somatostatin receptor subtypes 1,3,4 and 5, were characterised using the agonist radioligands [(125)I]LTT-SRIF-28, [(125)I][Tyr(10)]CST(14) and [(125)I]CGP 23996 in stably transfected Chinese hamster lung fibroblast (CCL39) cells. The peptides bound selectively to sst(4) receptors with nanomolar affinity (pK(d)=5.4-7.8). The peptides were investigated on second messenger systems both as agonists, and as antagonists to SRIF-14-mediated effects in CCL39 cells expressing mouse sst(4 )receptors, via measurement of inhibition of forskolin-stimulated adenylate cyclase activity, and stimulation of luciferase expression. The peptides showed full agonism or pronounced partial agonism (40 to 100% relative intrinsic activity) in both inhibition of forskolin-stimulated adenylate cyclase activity (pEC(50)=5.5-6.8), and luciferase expression (pEC(50)=5.5-6.5). The agonist potential was confirmed since antagonism was very difficult to establish. The data show that beta(2)/beta(3)-di- and alpha/beta(3)-tetrapeptide derivatives have agonist potential at recombinant somatostatin sst(4) receptors. Therefore, they may be used to elucidate physiological and biochemical effects mediated by sst(4), and may also have potential as therapeutic agents.


Subject(s)
Oligopeptides/pharmacology , Receptors, Somatostatin/agonists , Adenylyl Cyclases/metabolism , Animals , Cells, Cultured , Colforsin/pharmacology , Cricetinae , Cricetulus , Dipeptides/chemical synthesis , Dipeptides/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Ligands , Luciferases/biosynthesis , Lung/cytology , Membrane Proteins , Mice , Oligopeptides/chemical synthesis , Radioligand Assay , Receptors, Somatostatin/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...