Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(22): e2219686120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216541

ABSTRACT

Polycystins (PKD2, PKD2L1, and PKD2L2) are members of the transient receptor potential family, which form ciliary ion channels. Most notably, PKD2 dysregulation in the kidney nephron cilia is associated with polycystic kidney disease, but the function of PKD2L1 in neurons is undefined. In this report, we develop animal models to track the expression and subcellular localization of PKD2L1 in the brain. We discover that PKD2L1 localizes and functions as a Ca2+ channel in the primary cilia of hippocampal neurons that apically radiate from the soma. Loss of PKD2L1 expression ablates primary ciliary maturation and attenuates neuronal high-frequency excitability, which precipitates seizure susceptibility and autism spectrum disorder-like behavior in mice. The disproportionate impairment of interneuron excitability suggests that circuit disinhibition underlies the neurophenotypic features of these mice. Our results identify PKD2L1 channels as regulators of hippocampal excitability and the neuronal primary cilia as organelle mediators of brain electrical signaling.


Subject(s)
Autism Spectrum Disorder , Cilia , Mice , Animals , Cilia/metabolism , Autism Spectrum Disorder/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Neurons/metabolism , Hippocampus/metabolism , Receptors, Cell Surface/metabolism , Calcium Channels/metabolism
2.
Int J Mol Sci ; 23(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36232883

ABSTRACT

Pain is a worldwide public health problem and its treatment is still a challenge since clinically available drugs do not completely reverse chronic painful states or induce undesirable effects. Crotalphine is a 14 amino acids synthetic peptide that induces a potent and long-lasting analgesic effect on acute and chronic pain models, peripherally mediated by the endogenous release of dynorphin A and the desensitization of the transient receptor potential ankyrin 1 (TRPA1) receptor. However, the effects of crotalphine on the central nervous system (CNS) and the signaling pathway have not been investigated. Thus, the central effect of crotalphine was evaluated on the partial sciatic nerve ligation (PSNL)-induced chronic neuropathic pain model. Crotalphine (100 µg/kg, p.o.)-induced analgesia on the 14th day after surgery lasting up to 24 h after administration. This effect was prevented by intrathecal administration of CB1 (AM251) or CB2 (AM630) cannabinoid receptor antagonists. Besides that, crotalphine-induced analgesia was reversed by CTOP, nor-BNI, and naltrindole, antagonists of mu, kappa, and delta-opioid receptors, respectively, and also by the specific antibodies for ß-endorphin, dynorphin-A, and met-enkephalin. Likewise, the analgesic effect of crotalphine was blocked by the intrathecal administration of minocycline, an inhibitor of microglial activation and proliferation. Additionally, crotalphine decreased the PSNL-induced IL-6 release in the spinal cord. Importantly, in vitro, crotalphine inhibited LPS-induced CD86 expression and upregulated CD206 expression in BV-2 cells, demonstrating a polarization of microglial cells towards the M2 phenotype. These results demonstrated that crotalphine, besides activating opioid and cannabinoid analgesic systems, impairs central neuroinflammation, confirming the neuromodulatory mechanism involved in the crotalphine analgesic effect.


Subject(s)
Analgesia , Cannabinoids , Neuralgia , Amino Acids/metabolism , Analgesics/metabolism , Analgesics/pharmacology , Analgesics/therapeutic use , Analgesics, Opioid/metabolism , Ankyrins/metabolism , Cannabinoid Receptor Antagonists/therapeutic use , Cannabinoids/therapeutic use , Dynorphins/metabolism , Enkephalin, Methionine/metabolism , Humans , Interleukin-6/metabolism , Lipopolysaccharides/metabolism , Microglia/metabolism , Minocycline/therapeutic use , Neuralgia/metabolism , Peptides , Phenotype , Receptors, Opioid/metabolism , Spinal Cord , beta-Endorphin/metabolism
3.
Cell Rep ; 40(8): 111248, 2022 08 23.
Article in English | MEDLINE | ID: mdl-36001977

ABSTRACT

Voltage-gated sodium channels (NaV) in nociceptive neurons initiate action potentials required for transmission of aberrant painful stimuli observed in osteoarthritis (OA). Targeting NaV subtypes with drugs to produce analgesic effects for OA pain management is a developing therapeutic area. Previously, we determined the receptor site for the tamoxifen analog N-desmethyltamoxifen (ND-Tam) within a prokaryotic NaV. Here, we report the pharmacology of ND-Tam against eukaryotic NaVs natively expressed in nociceptive neurons. ND-Tam and analogs occupy two conserved intracellular receptor sites in domains II and IV of NaV1.7 to block ion entry using a "bind and plug" mechanism. We find that ND-Tam inhibition of the sodium current is state dependent, conferring a potent frequency- and voltage-dependent block of hyperexcitable nociceptive neuron action potentials implicated in OA pain. When evaluated using a mouse OA pain model, ND-Tam has long-lasting efficacy, which supports the potential of repurposing ND-Tam analogs as NaV antagonists for OA pain management.


Subject(s)
Tamoxifen , Voltage-Gated Sodium Channels , Action Potentials , Ganglia, Spinal , Humans , Nociceptors , Pain/drug therapy , Tamoxifen/pharmacology , Tamoxifen/therapeutic use
4.
Br J Pharmacol ; 179(8): 1640-1660, 2022 04.
Article in English | MEDLINE | ID: mdl-34076891

ABSTRACT

Depression and anxiety commonly occur in chronic pain states and the coexistence of these diseases worsens outcomes for both disorders and may reduce treatment adherence and response. Despite the advances in the knowledge of chronic pain mechanisms, pharmacological treatment is still unsatisfactory. Research based on exposure to environmental enrichment is currently under investigation and seems to offer a promising low-cost strategy with no side effects. In this review, we discuss the role of inflammation as a major biological substrate and aetiological factor of chronic pain and depression/anxiety and report a collection of preclinical evidence of the effects and mechanisms of environmental enrichment. As microglia participates in the development of both conditions, we also discuss microglia as a potential target underlying the beneficial actions of environmental enrichment in chronic pain and comorbid depression/anxiety. We also discuss how alternative interventions under clinical guidelines, such as environmental enrichment, may improve treatment compliance and patient outcomes. LINKED ARTICLES: This article is part of a themed issue on Building Bridges in Neuropharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.8/issuetoc.


Subject(s)
Chronic Pain , Anxiety Disorders/therapy , Chronic Pain/drug therapy , Depression/drug therapy , Humans , Neuroinflammatory Diseases , Neuropharmacology
5.
Blood Cells Mol Dis ; 92: 102604, 2021 12.
Article in English | MEDLINE | ID: mdl-34517295

ABSTRACT

Patients with COVID-19 can be asymptomatic or present mild to severe symptoms, leading to respiratory and cardiovascular complications and death. Type 2 diabetes mellitus (T2DM) and obesity are considered risk factors for COVID-19 poor prognosis. In parallel, COVID-19 severe patients exhibit dyslipidemia and alterations in neutrophil to lymphocyte ratio (NLR) associated with disease severity and mortality. To investigate whether such alterations are caused by the infection or results from preexisting comorbidities, this work analyzed dyslipidemia and the hemogram profile of COVID-19 patients according to the severity and compared with patients without T2DM or obesity comorbidities. Dyslipidemia, with a marked decrease in HDL levels, and increased NLR accompanied the disease severity, even in non-T2DM and non-obese patients, indicating that COVID-19 causes the observed alterations. Because decreased hemoglobin is involved in COVID-19 severity, and hemoglobin concentration is associated with metabolic diseases, the erythrogram of patients was also evaluated. We verified a drop in hemoglobin and erythrocyte number in severe patients, independently of T2DM and obesity, which may explain in part the need for artificial ventilation in severe cases. Thus, the control of such parameters (especially HDL levels, NLR, and hemoglobin concentration) could be a good strategy to prevent COVID-19 complications and death.


Subject(s)
Atherosclerosis/etiology , COVID-19/complications , Dyslipidemias/etiology , Leukocyte Count , SARS-CoV-2 , Adult , Aged , Anemia/epidemiology , Anemia/etiology , Atherosclerosis/epidemiology , COVID-19/blood , COVID-19/therapy , Comorbidity , Diabetes Mellitus, Type 2/epidemiology , Dyslipidemias/epidemiology , Erythrocyte Count , Hemoglobins/analysis , Humans , Hypoxia/etiology , Hypoxia/therapy , Lipoproteins, HDL/blood , Lymphocyte Count , Middle Aged , Neutrophils , Obesity/epidemiology , Respiration, Artificial , Retrospective Studies , Risk Factors , Severity of Illness Index
6.
Front Immunol ; 11: 591563, 2020.
Article in English | MEDLINE | ID: mdl-33193433

ABSTRACT

Crotoxin (CTX), the main neurotoxin from Crotalus durissus terrificus snake venom, has anti-inflammatory, immunomodulatory and antinociceptive activities. However, the CTX-induced toxicity may compromise its use. Under this scenario, the use of nanoparticle such as nanostructured mesoporous silica (SBA-15) as a carrier might become a feasible approach to improve CTX safety. Here, we determined the benefits of SBA-15 on CTX-related neuroinflammatory and immunomodulatory properties during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis that replicates several histopathological and immunological features observed in humans. We showed that a single administration of CTX:SBA-15 (54 µg/kg) was more effective in reducing pain and ameliorated the clinical score (motor impairment) in EAE animals compared to the CTX-treated EAE group; therefore, improving the disease outcome. Of interest, CTX:SBA-15, but not unconjugated CTX, prevented EAE-induced atrophy and loss of muscle function. Further supporting an immune mechanism, CTX:SBA-15 treatment reduced both recruitment and proliferation of peripheral Th17 cells as well as diminished IL-17 expression and glial cells activation in the spinal cord in EAE animals when compared with CTX-treated EAE group. Finally, CTX:SBA-15, but not unconjugated CTX, prevented the EAE-induced cell infiltration in the CNS. These results provide evidence that SBA-15 maximizes the immunomodulatory and anti-inflammatory effects of CTX in an EAE model; therefore, suggesting that SBA-15 has the potential to improve CTX effectiveness in the treatment of MS.


Subject(s)
Crotoxin/administration & dosage , Encephalomyelitis, Autoimmune, Experimental/etiology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Immunomodulation/drug effects , Silicon Dioxide , Theranostic Nanomedicine , Animals , Biomarkers , Biopsy , Crotoxin/adverse effects , Crotoxin/chemistry , Cytokines/metabolism , Disease Management , Disease Models, Animal , Disease Susceptibility , Encephalomyelitis, Autoimmune, Experimental/diagnosis , Female , Mice , Muscle, Skeletal/immunology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Severity of Illness Index , Spinal Cord/immunology , Spinal Cord/metabolism , Spinal Cord/pathology , Symptom Assessment
7.
Exp Cell Res ; 382(2): 111475, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31255600

ABSTRACT

Advanced glycation end-products (AGEs) are proteins/lipids that are glycated upon sugar exposure and are often increased during inflammatory diseases such as osteoarthritis and neurodegenerative disorders. Here, we developed an extracellular matrix (ECM) using glycated type I collagen (ECM-GC), which produced similar levels of AGEs to those detected in the sera of arthritic mice. In order to determine whether AGEs were sufficient to stimulate sensory neurons, dorsal root ganglia (DRGs) cells were cultured on ECM-GC or ECM-NC-coated plates. ECM-GC or ECM-NC were favorable for DRG cells expansion. However, ECM-GC cultivated neurons displayed thinner F-actin filaments, rounded morphology, and reduced neuron interconnection compared to ECM-NC. In addition, ECM-GC did not affect RAGE expression levels in the neurons, although induced rapid p38, MAPK and ERK activation. Finally, ECM-GC stimulated the secretion of nitrite and TNF-α by DRG cells. Taken together, our in vitro glycated ECM model suitably mimics the in vivo microenvironment of inflammatory disorders and provides new insights into the role of ECM impairment as a nociceptive stimulus.


Subject(s)
Cell Culture Techniques/methods , Collagen Type I/metabolism , Ganglia, Spinal/metabolism , Glycation End Products, Advanced/metabolism , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Cell Survival , Cells, Cultured , Enzyme Activation , Glycosylation , MAP Kinase Signaling System , Male , Mice , Nitrites/metabolism , Phosphorylation , Rats, Wistar , Receptor for Advanced Glycation End Products/metabolism , Tumor Necrosis Factor-alpha/biosynthesis
8.
Toxicon ; 126: 51-58, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28012802

ABSTRACT

There are a great number of studies about Brazilian scorpions. However, little is known about the venom of scorpions of northern Brazil, mainly about Tityus obscurus, which is responsible for the most number of accidents in the Amazon. Thus, this study aimed to evaluate some pharmacological effects of T. obscurus venom in rats and mice. In rats, the venom (10 mg/kg i.p.) caused hemorrhagic patches in the lung parenchyma but did not lead to pulmonary edema. There was a decrease in general activity, observed in the activity box after venom injection. The venom did not induce changes in the occurrence and intensity of experimentally induced convulsions, nor did it cause hippocampal neuronal loss. In mice, the LD50 obtained was 3.13 mg/kg (i.p.). Different doses of the venom (0.2; 1; 5; 10; 15 µg/30 µL per hind paw) induced edematogenic and moderate nociceptive activity in mice. The Tiyus serrulatus venom used as comparison caused more intense symptomatology in mice. Comparing to the venom of other Tityus scorpions of medical importance, that have convulsant and intense nociceptive effects and cause lung edema, as described in the literature, we can conclude that the venom of T. obscurus probably has different characteristics.


Subject(s)
Scorpion Venoms/toxicity , Animals , Behavior, Animal/drug effects , Brazil , Hippocampus/drug effects , Lethal Dose 50 , Lung/drug effects , Mice , Rats , Rats, Wistar , Seizures/chemically induced , Species Specificity
9.
Toxicon ; 121: 51-60, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27567703

ABSTRACT

Bites caused by Scolopendra viridicornis centipede are mainly characterized by burning pain, paresthesia and edema. On this regard, the aim of this work was to study the involvement of mast cells and histamine in edema induced by Scolopendra viridicornis (Sv) centipede venom. The edema was analyzed on mice paws. The mice were pretreated with cromolyn (mast cell degranulation inhibitor) and antagonists of histamine receptors, such as promethazine (H1R), cimetidine (H2R) and thioperamide (H3/H4R). The analyses were carried out at different times after the injection of Sv venom (15 µg) or PBS in the footpad of mice. Our results showed a significant inhibition of the edema induced by Sv venom injection in mice previously treated: cromolyn (38-91%), promethazine (50-59%) and thioperamide (around 30%). The treatment with cimetidine did not alter the edema induced by Sv venom. Histopathological analysis showed that Sv venom injection (15 µg) induced edema, leukocyte recruitment and mast cells degranulation, when compared with the PBS-injected mice. Direct effects of the Sv venom on mast cells were studied in PT-18 line (mouse mast cell) and RBL-2H3 cells (rat mast cells). The data showed that higher doses (3.8 and 7.5 µg) of Sv venom were cytotoxic for both cell lineages and induced morphological changes. However, lower doses of the venom induced degranulation of both mast cell lines, as well as the secretion of MCP-1, IL-6 and IL-1ß. The production of PGD2 was only observed in the RBL-2H3 line incubated with Sv venom. Taking our results together, we demonstrated that upon Sv venom exposure, mast cells and histamine are crucial for the establishment of the local inflammatory reaction.


Subject(s)
Arthropod Venoms/toxicity , Edema/etiology , Histamine/adverse effects , Mast Cells/cytology , Animals , Arthropods , Cell Line , Chemokines/biosynthesis , Cytokines/biosynthesis , Eicosanoids/biosynthesis , Male , Mast Cells/metabolism , Mice , Microscopy, Electron, Scanning
10.
Exp Biol Med (Maywood) ; 241(18): 2075-2085, 2016 12.
Article in English | MEDLINE | ID: mdl-27439537

ABSTRACT

Snakebites inflicted by the arboreal viperid snake Bothriechis schlegelii in humans are characterized by pain, edema, and ecchymosis at the site of the bite, rarely with blisters, local necrosis, or defibrination. Herein, a comparative study of Bothriechis schlegelii snake venoms from Colombia (BsCo) and Costa Rica (BsCR) was carried out in order to compare their main activities and to verify the efficacy of Bothrops antivenom produced in Brazil to neutralize them. Biochemical (SDS-PAGE and zymography) and biological parameters (edematogenic, lethal, hemorrhagic, nociceptive, and phospholipase A2 activities) induced by BsCo and BsCR snake venoms were evaluated. The presence of antibodies in Bothrops antivenom that recognize BsCo and BsCR snake venoms by enzyme-linked immunosorbent assay and Western blotting, as well as the ability of this antivenom to neutralize the toxic activities were also verified. SDS-PAGE showed differences between venoms. Distinctive caseinolytic and hyaluronidase patterns were detected by zymography. BsCo and BsCR showed similar phospholipase A2 activity. Strong cross-reactivity between BsCo and BsCR was detected using Bothrops antivenom with many components located between 150 and 35 kDa. BsCR was more edematogenic and almost fourfold more hemorrhagic than BsCo, and both venoms induced nociception. BsCR (LD50 5.60 mg/kg) was more lethal to mice than BsCo (LD50 9.24 mg/kg). Bothrops antivenom was effective in the neutralization of lethal and hemorrhagic activities of BsCo and BsCR and was partially effective in the neutralization of edematogenic and nociceptive activities. In conclusion, geographic distribution influences the composition and activities of Bothriechis schlegelii venoms. Bothrops antivenom cross-reacted with these venoms and was partially effective in neutralizing some toxic activities of BsCo and BsCR.


Subject(s)
Viper Venoms/chemistry , Viperidae , Animals , Antibodies/immunology , Antivenins/pharmacology , Blotting, Western , Colombia , Costa Rica , Cross Reactions/immunology , Edema/chemically induced , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Hemorrhage/chemically induced , Male , Mice , Proteolysis/drug effects , Viper Venoms/antagonists & inhibitors , Viper Venoms/immunology , Viper Venoms/pharmacology
11.
Toxicon ; 103: 65-73, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26100666

ABSTRACT

This work aimed to investigate mechanisms underlying the inflammatory response caused by Potamotrygon motoro stingray venom (PmV) in mouse paws. Pre-treatment of animals with a mast cell degranulation inhibitor (cromolyn) diminished edema (62% of inhibition) and leukocyte influx into the site of PmV injection. Promethazine (histamine type 1 receptor antagonist) or thioperamide (histamine type 3 and 4 receptor antagonist) also decreased edema (up to 30%) and leukocyte numbers, mainly neutrophils (40-50 %). Cimetidine (histamine type 2 receptor antagonist) had no effect on PmV-induced inflammation. In the RBL-2H3 lineage of mast cells, PmV caused proper cell activation, in a dose-dependent manner, with release of PGD2 and PGE2. In addition, the role of COXs products on PmV inflammatory response was evaluated. Indomethacin (COX-1/COX-2 inhibitor) or etoricoxib (COX-2 inhibitor) partially diminished edema (around 20%) in PmV-injected mice. Indomethacin, but not etoricoxib, modulated neutrophil influx into the site of venom injection. In conclusion, mast cell degranulation and histamine, besides COXs products, play an important role in PmV-induced reaction. Since PmV mechanism of action remains unknown, hindering accurate treatment, clinical studies can be performed to validate the prescription of antihistaminic drugs, besides NSAIDs, to patients injured by freshwater stingrays.


Subject(s)
Edema/pathology , Elasmobranchii/metabolism , Fish Venoms/toxicity , Histamine/toxicity , Leukocytes/drug effects , Mast Cells/drug effects , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cyclooxygenase 1/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Dinoprostone/metabolism , Edema/chemically induced , Etoricoxib , Histamine H1 Antagonists/pharmacology , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Mice , Promethazine/pharmacology , Prostaglandin D2/metabolism , Pyridines/pharmacology , Rats , Sulfones/pharmacology
12.
Exp Biol Med (Maywood) ; 239(5): 601-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24668554

ABSTRACT

Freshwater stingray accidents cause intense pain followed by edema, erythema, and necrosis formation. Treatment for stingray envenomation is based on administration of analgesic, antipyretic, and anti-inflammatory drugs. This report evaluated the local inflammatory reaction-including edema formation, leukocyte recruitment, release of inflammatory mediators, and histopathological changes-after the intraplantar injection of Potamotrygon motoro stingray venom in mice. Edema was observed as soon as 15 min after venom injection, peaking at 30 min, and lasted up to 48 h. In addition, P. motoro venom increased neutrophil counts in the site of injection, at all time periods and venom doses analyzed. Increased eosinophil and lymphocyte counts were detected mainly at 24 h. Moreover, monocytes/macrophages were observed in large amounts at 24 and 48 h. Microscopically, the venom induced leukocyte migration to the injured tissue, edema, mast cell degranulation, angiogenesis, and epidermal damage. Inflammatory mediator release (IL-6, MCP-1 and KC) was detected as soon as 1 h after venom injection, and it increased significantly at 4 h. At 24 h, the venom induced only the production of MCP-1. These results show that this stingray venom evokes a complex inflammatory reaction, with rapid and persistent edema formation, leukocyte recruitment, and release of cytokines and chemokines.


Subject(s)
Elasmobranchii , Inflammation/chemically induced , Inflammation/pathology , Poisons/toxicity , Venoms/toxicity , Animals , Disease Models, Animal , Edema/chemically induced , Edema/pathology , Epidermis/pathology , Histocytochemistry , Inflammation Mediators/analysis , Leukocytes/immunology , Male , Mice , Microscopy , Neovascularization, Pathologic
13.
Biochimie ; 95(9): 1773-83, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23770445

ABSTRACT

Loxosceles venom comprises a mixture of diverse toxins that induces intense local inflammatory reaction, dermonecrotic injury, platelet aggregation, hemolytic anemia and acute renal failure. Among several toxins in the venom, phospholipases D (PLDs), also called dermonecrotic toxins, are the most important and best studied, since they account for the main effects observed in loxoscelism. Despite their importance, biological analysis of PLDs is hampered by the minute amounts normally purified from the venom, and therefore many efforts have been made to clone those toxins. However, to date, no PLD from Loxosceles gaucho has been obtained in a heterologous system. Thus, in this work we show the cloning of a PLD from L. gaucho venom gland, named LgRec1, which was successfully expressed in a bacterial system. LgRec1 evoked local reaction (edema, erythema, ecchymosis, and paleness), dermonecrosis and hemolysis. It was also able to hydrolyze sphingomyelin and promote platelet aggregation. ELISA and Western blot analysis showed that LgRec1 was recognized by an anti-L. gaucho venom serum, a commercial arachnidic antivenom as well as a monoclonal antibody raised against the dermonecrotic fraction of L. gaucho venom. In addition, LgRec1 demonstrated to be highly immunogenic and antibodies raised against this recombinant toxin inhibited local reaction (~65%) and dermonecrosis (~100%) elicited by L. gaucho whole venom. Since PLDs are considered the major components accounting for the local and systemic envenomation effects caused by spiders from genus Loxosceles, the information provided here may help to understand the mechanisms behind clinical symptomatology.


Subject(s)
Phospholipase D/genetics , Spider Venoms/genetics , Amino Acid Sequence , Animals , Antibodies, Neutralizing/immunology , Base Sequence , Cloning, Molecular , Cross Reactions , Gene Expression , Hemolysis/drug effects , Humans , Molecular Sequence Data , Phospholipase D/immunology , Phospholipase D/metabolism , Phospholipase D/pharmacology , Platelet Aggregation/drug effects , Rabbits , Sequence Alignment , Sphingomyelin Phosphodiesterase/metabolism , Structure-Activity Relationship
14.
Toxicon ; 56(6): 972-9, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20615425

ABSTRACT

Patients bitten by Loxosceles spiders generally manifest marked local inflammatory reaction and dermonecrosis. This report evaluated edema formation, leukocyte infiltration and release of inflammatory mediators at the injection site of Loxosceles gaucho venom. BALB/c mice were i.d. injected with venom and thereafter paws were disrupted and homogenized to obtain differential counts of migrated cells, as well to assay the levels of cytokines, chemokines and lipid mediators. Increased footpad thickness was detected as soon as 30 min after venom injection, and 24h later was similar to that of the control group. Loxosceles venom mildly augmented the recruitment of leukocytes to the footpad in comparison with PBS-injected mice. Moreover, it stimulated the release of IL-6, MCP-1 and KC at 2 and 24h after venom injection. In addition, higher levels of PGE(2) were detected 30 min after venom injection in comparison with control group. However, the venom failed to increase levels of IL-1 beta, TNF-alpha, TXB(2) and LTB(4). Our results demonstrate that L. gaucho venom evokes an early complex inflammatory reaction, stimulating the secretion of pro-inflammatory cytokines and lipid mediators (PGE(2)), and recruiting leukocytes to the footpad which contribute to the local reaction induced by L. gaucho venom.


Subject(s)
Inflammation Mediators/metabolism , Inflammation/chemically induced , Phosphoric Diester Hydrolases/toxicity , Serine Endopeptidases , Spider Bites/metabolism , Spider Venoms/toxicity , Spiders/physiology , Animals , Biomarkers/metabolism , Disease Models, Animal , Edema/chemically induced , Edema/metabolism , Edema/pathology , Hindlimb , Inflammation/metabolism , Inflammation/pathology , Leukocyte Count , Male , Mice , Mice, Inbred BALB C , Neutrophil Infiltration/drug effects , Neutrophil Infiltration/physiology , Phosphoric Diester Hydrolases/immunology , Spider Bites/immunology , Spider Bites/pathology , Spider Venoms/immunology
15.
Toxicon ; 56(6): 972-979, Jul 17, 2010.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1068258

ABSTRACT

Patients bitten by Loxosceles spiders generally manifest marked local inflammatory reaction and dermonecrosis. This report evaluated edema formation, leukocyte infiltration and release of inflammatory mediators at the injection site of Loxosceles gaucho venom. BALB/c mice were i.d. injected with venom and thereafter paws were disrupted and homogenizedto obtain differential counts of migrated cells, as well to assay the levels of cytokines, chemokines and lipid mediators. Increased footpad thickness was detected as soon as30 min after venom injection, and 24 h later was similar to that of the control group. Loxosceles venom mildly augmented the recruitment of leukocytes to the footpad in comparison with PBS-injected mice. Moreover, it stimulated the release of IL-6, MCP-1 and KC at 2 and 24 h after venom injection. In addition, higher levels of PGE2 were detected30 min after venom injection in comparison with control group. However, the venom failed to increase levels of IL-1b, TNF-a, TXB2 and LTB4. Our results demonstrate that L. gaucho venom evokes an early complex inflammatory reaction, stimulating the secretionof pro-inflammatory cytokines and lipid mediators (PGE2), and recruiting leukocytes to the $footpad which contribute to the local reaction induced by L. gaucho venom.


Subject(s)
Animals , Spiders , Spider Bites , Spider Venoms/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...