Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Eur J Nucl Med Mol Imaging ; 50(2): 352-375, 2023 01.
Article in English | MEDLINE | ID: mdl-36326868

ABSTRACT

PURPOSE: The purpose of this guideline is to provide comprehensive information on best practices for robust radiomics analyses for both hand-crafted and deep learning-based approaches. METHODS: In a cooperative effort between the EANM and SNMMI, we agreed upon current best practices and recommendations for relevant aspects of radiomics analyses, including study design, quality assurance, data collection, impact of acquisition and reconstruction, detection and segmentation, feature standardization and implementation, as well as appropriate modelling schemes, model evaluation, and interpretation. We also offer an outlook for future perspectives. CONCLUSION: Radiomics is a very quickly evolving field of research. The present guideline focused on established findings as well as recommendations based on the state of the art. Though this guideline recognizes both hand-crafted and deep learning-based radiomics approaches, it primarily focuses on the former as this field is more mature. This guideline will be updated once more studies and results have contributed to improved consensus regarding the application of deep learning methods for radiomics. Although methodological recommendations in the present document are valid for most medical image modalities, we focus here on nuclear medicine, and specific recommendations when necessary are made for PET/CT, PET/MR, and quantitative SPECT.


Subject(s)
Nuclear Medicine , Humans , Nuclear Medicine/methods , Positron Emission Tomography Computed Tomography , Data Science , Radionuclide Imaging , Physics
2.
Tomography ; 6(2): 118-128, 2020 06.
Article in English | MEDLINE | ID: mdl-32548288

ABSTRACT

Radiomic features are being increasingly studied for clinical applications. We aimed to assess the agreement among radiomic features when computed by several groups by using different software packages under very tightly controlled conditions, which included standardized feature definitions and common image data sets. Ten sites (9 from the NCI's Quantitative Imaging Network] positron emission tomography-computed tomography working group plus one site from outside that group) participated in this project. Nine common quantitative imaging features were selected for comparison including features that describe morphology, intensity, shape, and texture. The common image data sets were: three 3D digital reference objects (DROs) and 10 patient image scans from the Lung Image Database Consortium data set using a specific lesion in each scan. Each object (DRO or lesion) was accompanied by an already-defined volume of interest, from which the features were calculated. Feature values for each object (DRO or lesion) were reported. The coefficient of variation (CV), expressed as a percentage, was calculated across software packages for each feature on each object. Thirteen sets of results were obtained for the DROs and patient data sets. Five of the 9 features showed excellent agreement with CV < 1%; 1 feature had moderate agreement (CV < 10%), and 3 features had larger variations (CV ≥ 10%) even after attempts at harmonization of feature calculations. This work highlights the value of feature definition standardization as well as the need to further clarify definitions for some features.


Subject(s)
Image Processing, Computer-Assisted , Positron Emission Tomography Computed Tomography , Radiometry , Software , Humans , Neoplasms/diagnostic imaging , Radiometry/standards , Reference Standards
3.
AJNR Am J Neuroradiol ; 39(6): 1008-1016, 2018 06.
Article in English | MEDLINE | ID: mdl-29794239

ABSTRACT

BACKGROUND AND PURPOSE: Standard assessment criteria for brain tumors that only include anatomic imaging continue to be insufficient. While numerous studies have demonstrated the value of DSC-MR imaging perfusion metrics for this purpose, they have not been incorporated due to a lack of confidence in the consistency of DSC-MR imaging metrics across sites and platforms. This study addresses this limitation with a comparison of multisite/multiplatform analyses of shared DSC-MR imaging datasets of patients with brain tumors. MATERIALS AND METHODS: DSC-MR imaging data were collected after a preload and during a bolus injection of gadolinium contrast agent using a gradient recalled-echo-EPI sequence (TE/TR = 30/1200 ms; flip angle = 72°). Forty-nine low-grade (n = 13) and high-grade (n = 36) glioma datasets were uploaded to The Cancer Imaging Archive. Datasets included a predetermined arterial input function, enhancing tumor ROIs, and ROIs necessary to create normalized relative CBV and CBF maps. Seven sites computed 20 different perfusion metrics. Pair-wise agreement among sites was assessed with the Lin concordance correlation coefficient. Distinction of low- from high-grade tumors was evaluated with the Wilcoxon rank sum test followed by receiver operating characteristic analysis to identify the optimal thresholds based on sensitivity and specificity. RESULTS: For normalized relative CBV and normalized CBF, 93% and 94% of entries showed good or excellent cross-site agreement (0.8 ≤ Lin concordance correlation coefficient ≤ 1.0). All metrics could distinguish low- from high-grade tumors. Optimum thresholds were determined for pooled data (normalized relative CBV = 1.4, sensitivity/specificity = 90%:77%; normalized CBF = 1.58, sensitivity/specificity = 86%:77%). CONCLUSIONS: By means of DSC-MR imaging data obtained after a preload of contrast agent, substantial consistency resulted across sites for brain tumor perfusion metrics with a common threshold discoverable for distinguishing low- from high-grade tumors.


Subject(s)
Brain Neoplasms/diagnostic imaging , Datasets as Topic/standards , Glioma/diagnostic imaging , Image Interpretation, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Adult , Aged , Algorithms , Brain Neoplasms/pathology , Female , Glioma/pathology , Humans , Image Interpretation, Computer-Assisted/methods , Male , Middle Aged , National Cancer Institute (U.S.) , United States
4.
Phys Med Biol ; 61(23): 8298-8320, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27811385

ABSTRACT

A PET detector featuring a pseudo-monolithic crystal is being developed as a more cost-effective alternative to a full monolithic crystal PET detector. This work evaluates different methods to localize the scintillation events in quartered monolithic crystals that are optically coupled. A semi-monolithic crystal assembly was formed using four 26 × 26 × 10 mm3 LYSO crystals optically coupled together using optical adhesive, to mimic a 52 × 52 × 10 mm3 monolithic crystal detector. The crystal assembly was coupled to a 64-channel multi-anode photomultiplier tube using silicon grease. The detector was calibrated using a 34 × 34 scan grid. Events were first filtered and depth separated using a multi-Lorentzian fit to the collected light distribution. Next, three different techniques were explored to generate the look up tables for the event positioning. The first technique was 'standard interpolation' across the interface. The second technique was 'central extrapolation', where a bin was placed at the midpoint of the interface and events positioned within the interface region were discarded. The third technique used a 'central overlap' method where an extended region was extrapolated at each interface. Events were then positioned using least-squares minimization and maximum likelihood methods. The least-squares minimization applied to the look up table generated with the standard interpolation technique had the best full width at half maximum (FWHM) intrinsic spatial resolution and the lowest bias. However, there were discontinuities in the event positioning that would most likely lead to artifacts in the reconstructed image. The central extrapolation technique also had discontinuities and a 30% sensitivity loss near the crystal-crystal interfaces. The central overlap technique had slightly degraded performance metrics, but it still provided ~2.1 mm intrinsic spatial resolution at the crystal-crystal interface and had a symmetric and continuously varying response function. Results using maximum likelihood positioning were similar to least-squares minimization for the central overlap data.


Subject(s)
Optics and Photonics , Positron-Emission Tomography/instrumentation , Scintillation Counting/instrumentation , Silicon/chemistry , Artifacts , Calibration , Humans , Positron-Emission Tomography/methods , Time Factors
5.
Phys Med Biol ; 60(9): 3731-46, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25884892

ABSTRACT

Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [(18)F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10-20%, treatment planning errors were 5-10%, and treatment delivery errors were 5-30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5-10% in PET/CT imaging, <5% in treatment planning, and <2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT planning, and RT delivery under a dose painting paradigm is feasible within an integrated respiratory motion phantom workflow. For a limited set of cases, the magnitude of errors was comparable during PET/CT imaging and treatment delivery without motion compensation. Errors were moderately mitigated during PET/CT imaging and significantly mitigated during RT delivery with motion compensation. This dynamic motion phantom end-to-end workflow provides a method for quality assurance of 4D PET/CT-guided radiotherapy, including evaluation of respiratory motion compensation methods during imaging and treatment delivery.


Subject(s)
Four-Dimensional Computed Tomography/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Setup Errors/prevention & control , Tomography, X-Ray Computed/methods , Humans , Motion , Phantoms, Imaging , Positron-Emission Tomography/methods , Respiration
6.
Phys Med Biol ; 59(18): 5347-60, 2014 Sep 21.
Article in English | MEDLINE | ID: mdl-25146849

ABSTRACT

To reduce the number of output channels and associated cost in PET detectors, strategies to multiplex the signal channels have been investigated by several researchers. This work aims to find an optimal multiplexing strategy for detector modules consisting of a monolithic LYSO scintillator coupled to a 64-channel PMT. We apply simulated multiplexing strategies to measured data from two continuous miniature crystal element (cMiCE) detector modules. The strategies tested include standard methods such as row column summation and its variants, as well as new data-driven methods involving the principal components of measured data and variants of those components. The detector positioning resolution and bias are measured for each multiplexing strategy and the results are compared. The mean FWHM over the entire detector was 1.23 mm for no multiplexing (64 channels). Using 16 principal component channels yielded a mean FWHM resolution of 1.21 mm, while traditional row/column summation (16 channels) yielded 1.28 mm. Using 8 principal component output channels resulted in a resolution of 1.30 mm. Using the principal components of the calibration data to guide the multiplexing scheme appears to be a viable method for reducing the number of output data channels. Further study is needed to determine if the depth-of-interaction resolution can be preserved with this multiplexing scheme.


Subject(s)
Algorithms , Positron-Emission Tomography/methods , Calibration , Positron-Emission Tomography/instrumentation , Positron-Emission Tomography/standards
7.
Phys Med Biol ; 56(12): 3629-43, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21610291

ABSTRACT

We investigated the relationship between noise equivalent count (NEC) and axial field of view (AFOV) for PET scanners with AFOVs ranging from one-half to twice those of current clinical scanners. PET scanners with longer or shorter AFOVs could fulfill different clinical needs depending on exam volumes and site economics. Using previously validated Monte Carlo simulations, we modeled true, scattered and random coincidence counting rates for a PET ring diameter of 88 cm with 2, 4, 6, and 8 rings of detector blocks (AFOV 7.8, 15.5, 23.3, and 31.0 cm). Fully 3D acquisition mode was compared to full collimation (2D) and partial collimation (2.5D) modes. Counting rates were estimated for a 200 cm long version of the 20 cm diameter NEMA count-rate phantom and for an anthropomorphic object based on a patient scan. We estimated the live-time characteristics of the scanner from measured count-rate data and applied that estimate to the simulated results to obtain NEC as a function of object activity. We found NEC increased as a quadratic function of AFOV for 3D mode, and linearly in 2D mode. Partial collimation provided the highest overall NEC on the 2-block system and fully 3D mode provided the highest NEC on the 8-block system for clinically relevant activities. On the 4-, and 6-block systems 3D mode NEC was highest up to ∼300 MBq in the anthropomorphic phantom, above which 3D NEC dropped rapidly, and 2.5D NEC was highest. Projected total scan time to achieve NEC-density that matches current clinical practice in a typical oncology exam averaged 9, 15, 24, and 61 min for the 8-, 6-, 4-, and 2-block ring systems, when using optimal collimation. Increasing the AFOV should provide a greater than proportional increase in NEC, potentially benefiting patient throughput-to-cost ratio. Conversely, by using appropriate collimation, a two-ring (7.8 cm AFOV) system could acquire whole-body scans achieving NEC-density levels comparable to current standards within long, but feasible, scan times.


Subject(s)
Positron-Emission Tomography/instrumentation , Bismuth , Germanium , Humans , Kinetics , Monte Carlo Method , Whole Body Imaging
8.
Phys Med Biol ; 56(8): 2481-98, 2011 Apr 21.
Article in English | MEDLINE | ID: mdl-21441650

ABSTRACT

Dynamic PET image reconstruction is a challenging issue due to the low SNR and the large quantity of spatio-temporal data. We propose a robust state-space image reconstruction (SSIR) framework for activity reconstruction in dynamic PET. Unlike statistically-based frame-by-frame methods, tracer kinetic modeling is incorporated to provide physiological guidance for the reconstruction, harnessing the temporal information of the dynamic data. Dynamic reconstruction is formulated in a state-space representation, where a compartmental model describes the kinetic processes in a continuous-time system equation, and the imaging data are expressed in a discrete measurement equation. Tracer activity concentrations are treated as the state variables, and are estimated from the dynamic data. Sampled-data H(∞) filtering is adopted for robust estimation. H(∞) filtering makes no assumptions on the system and measurement statistics, and guarantees bounded estimation error for finite-energy disturbances, leading to robust performance for dynamic data with low SNR and/or errors. This alternative reconstruction approach could help us to deal with unpredictable situations in imaging (e.g. data corruption from failed detector blocks) or inaccurate noise models. Experiments on synthetic phantom and patient PET data are performed to demonstrate feasibility of the SSIR framework, and to explore its potential advantages over frame-by-frame statistical reconstruction approaches.


Subject(s)
Image Processing, Computer-Assisted/methods , Models, Biological , Phantoms, Imaging , Positron-Emission Tomography/methods , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Computer Simulation , Feasibility Studies , Female , Fluorodeoxyglucose F18 , Humans , Kinetics , Radiopharmaceuticals
9.
Med Phys ; 37(11): 6035-46, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21158315

ABSTRACT

PURPOSE: The variances and biases inherent in quantifying PET tracer uptake from instrumentation factors are needed to ascertain the significance of any measured differences such as in quantifying response to therapy. The authors studied the repeatability and reproducibility of serial PET measures of activity as a function of object size, acquisition, reconstruction, and analysis method on one scanner and at three PET centers using a single protocol with long half-life phantoms. METHODS: The authors assessed standard deviations (SDs) and mean biases of consecutive measures of PET activity concentrations in a uniform phantom and a NEMA NU-2 image quality (IQ) phantom filled with 9 months half-life 68Ge in an epoxy matrix. Activity measurements were normalized by dividing by a common decay corrected true value and reported as recovery coefficients (RCs). Each experimental set consisted of 20 consecutive PET scans of either a stationary phantom to evaluate repeatability or a repositioned phantom to assess reproducibility. One site conducted a comprehensive series of repeatability and reproducibility experiments, while two other sites repeated the reproducibility experiments using the same IQ phantom. An equation was derived to estimate the SD of a new PET measure from a known SD based on the ratios of available coincident counts between the two PET measures. RESULTS: For stationary uniform phantom scans, the SDs of maximum RCs were three to five times less than predicted for uncorrelated pixels within circular regions of interest (ROIs) with diameters ranging from 1 to 15 cm. For stationary IQ phantom scans from 1 cm diameter ROIs, the average SDs of mean and maximum RCs ranged from 1.4% to 8.0%, depending on the methods of acquisition and reconstruction (coefficients of variation range 2.5% to 9.8%). Similar SDs were observed for both analytic and iterative reconstruction methods (p > or = 0.08). SDs of RCs for 2D acquisitions were significantly higher than for 3D acquisitions (p < or =s 0.008) for same acquisition and processing parameters. SDs of maximum RCs were larger than corresponding mean values for stationary IQ phantom scans ( < or = 0.02), although the magnitude of difference is reduced due to noise correlations in the image. Increased smoothing decreased SDs ( < or =s 0.045) and decreased maximum and mean RCs (p < or = 0.02). Reproducibility of GE DSTE, Philips Gemini TF, and Siemens Biograph Hi-REZ PET/CT scans of the same IQ phantom, with similar acquisition, reconstruction, and repositioning among 20 scans, were, in general, similar (mean and maximum RC SD range 2.5% to 4.8%). CONCLUSIONS: Short-term scanner variability is low compared to other sources of error. There are tradeoffs in noise and bias depending on acquisition, processing, and analysis methods. The SD of a new PET measure can be estimated from a known SD if the ratios of available coincident counts between the two PET scanner acquisitions are known and both employ the same ROI definition. Results suggest it is feasible to use PET/CTs from different vendors and sites in clinical trials if they are properly cross-calibrated.


Subject(s)
Positron-Emission Tomography/methods , Tomography, X-Ray Computed/methods , Air , Calibration , Equipment Design , Germanium/chemistry , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional/methods , Materials Testing , Phantoms, Imaging , Radioisotopes/chemistry , Reproducibility of Results , Water/chemistry
10.
Phys Med Biol ; 55(5): 1453-73, 2010 Mar 07.
Article in English | MEDLINE | ID: mdl-20150683

ABSTRACT

The addition of accurate system modeling in PET image reconstruction results in images with distinct noise texture and characteristics. In particular, the incorporation of point spread functions (PSF) into the system model has been shown to visually reduce image noise, but the noise properties have not been thoroughly studied. This work offers a systematic evaluation of noise and signal properties in different combinations of reconstruction methods and parameters. We evaluate two fully 3D PET reconstruction algorithms: (1) OSEM with exact scanner line of response modeled (OSEM+LOR), (2) OSEM with line of response and a measured point spread function incorporated (OSEM+LOR+PSF), in combination with the effects of four post-reconstruction filtering parameters and 1-10 iterations, representing a range of clinically acceptable settings. We used a modified NEMA image quality (IQ) phantom, which was filled with 68Ge and consisted of six hot spheres of different sizes with a target/background ratio of 4:1. The phantom was scanned 50 times in 3D mode on a clinical system to provide independent noise realizations. Data were reconstructed with OSEM+LOR and OSEM+LOR+PSF using different reconstruction parameters, and our implementations of the algorithms match the vendor's product algorithms. With access to multiple realizations, background noise characteristics were quantified with four metrics. Image roughness and the standard deviation image measured the pixel-to-pixel variation; background variability and ensemble noise quantified the region-to-region variation. Image roughness is the image noise perceived when viewing an individual image. At matched iterations, the addition of PSF leads to images with less noise defined as image roughness (reduced by 35% for unfiltered data) and as the standard deviation image, while it has no effect on background variability or ensemble noise. In terms of signal to noise performance, PSF-based reconstruction has a 7% improvement in contrast recovery at matched ensemble noise levels and 20% improvement of quantitation SNR in unfiltered data. In addition, the relations between different metrics are studied. A linear correlation is observed between background variability and ensemble noise for all different combinations of reconstruction methods and parameters, suggesting that background variability is a reasonable surrogate for ensemble noise when multiple realizations of scans are not available.


Subject(s)
Imaging, Three-Dimensional/methods , Positron-Emission Tomography/methods , Algorithms , Analysis of Variance , Humans , Scattering, Radiation , Time Factors
11.
Phys Med Biol ; 53(14): 3723-38, 2008 Jul 21.
Article in English | MEDLINE | ID: mdl-18574308

ABSTRACT

We measured count rates and scatter fraction on the Discovery STE PET/CT scanner in conventional 2D and 3D acquisition modes, and in a partial collimation mode between 2D and 3D. As part of the evaluation of using partial collimation, we estimated global count rates using a scanner model that combined computer simulations with an empirical live-time function. Our measurements followed the NEMA NU2 count rate and scatter-fraction protocol to obtain true, scattered and random coincidence events, from which noise equivalent count (NEC) rates were calculated. The effect of patient size was considered by using 27 cm and 35 cm diameter phantoms, in addition to the standard 20 cm diameter cylindrical count-rate phantom. Using the scanner model, we evaluated two partial collimation cases: removing half of the septa (2.5D) and removing two-thirds of the septa (2.7D). Based on predictions of the model, a 2.7D collimator was constructed. Count rates and scatter fractions were then measured in 2D, 2.7D and 3D. The scanner model predicted relative NEC variation with activity, as confirmed by measurements. The measured 2.7D NEC was equal or greater than 3D NEC for all activity levels in the 27 cm and 35 cm phantoms. In the 20 cm phantom, 3D NEC was somewhat higher ( approximately 15%) than 2.7D NEC at 100 MBq. For all higher activity concentrations, 2.7D NEC was greater and peaked 26% above the 3D peak NEC. The peak NEC in 2.7D mode occurred at approximately 425 MBq, and was 26-50% greater than the peak 3D NEC, depending on object size. NEC in 2D was considerably lower, except at relatively high activity concentrations. Partial collimation shows promise for improved noise equivalent count rates in clinical imaging without altering other detector parameters.


Subject(s)
Imaging, Three-Dimensional/methods , Positron-Emission Tomography/methods , Tomography, X-Ray Computed/methods , Computer Simulation , Monte Carlo Method , Time Factors
12.
Article in English | MEDLINE | ID: mdl-19212453

ABSTRACT

We present a study that introduces two approaches to implementing block detectors into SimSET and compares their performance. SimSET is a photon tracking simulation package, which currently incorporates only detectors made of a solid annulus of scinitillator material. A pseudo-block approximation has been imposed on the solid annulus of conventional SimSET by discarding interactions in annulus segments that span the angular block gap. This yields blocks that are annulus segments, not rectangles. This is a quick and easy approximation of block structure, which brings SimSET results closer to actual scanner measurements. Even better agreement is expected with a deeper modification of the SimSET code that implements true rectangular blocks in the detector module (to be released late 2007/early 2008). This approach enables the greatest amount of variability and trueness to detail.We compare results from both block structure implementations to the conventional SimSET results and to measurements from a GE DSTE PET/CT scanner. Differences are evaluated in terms of sensitivities, crystal maps, and energy spectra, as well as in benchmark time tests of the simulation runs and their ease of use.Either implementation of block structure can aid in improving simulation accuracy by ameliorating one known cause of discrepancies, the geometric nature of the block detectors.

13.
IEEE Trans Nucl Sci ; 54: 116-123, 2007.
Article in English | MEDLINE | ID: mdl-18392119

ABSTRACT

A localization ROC (LROC) study was conducted to evaluate nonprewhitening matched-filter (NPW) and channelized NPW (CNPW) versions of a multiclass model observer as predictors of human tumor-detection performance with PET images. Target localization is explicitly performed by these model observers. Tumors were placed in the liver, lungs, and background soft tissue of a mathematical phantom, and the data simulation modeled a full-3D acquisition mode. Reconstructions were performed with the FORE+AWOSEM algorithm. The LROC study measured observer performance with 2D images consisting of either coronal, sagittal, or transverse views of the same set of cases. Versions of the CNPW observer based on two previously published difference-of-Gaussian channel models demonstrated good quantitative agreement with human observers. One interpretation of these results treats the CNPW observer as a channelized Hotelling observer with implicit internal noise.

14.
IEEE Trans Med Imaging ; 23(4): 413-25, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15084067

ABSTRACT

We present a method of performing fast and accurate three-dimensional (3-D) backprojection using only Fourier transform operations for line-integral data acquired by planar detector arrays in positron emission tomography. This approach is a 3-D extension of the two-dimensional (2-D) linogram technique of Edholm. By using a special choice of parameters to index a line of response (LOR) for a pair of planar detectors, rather than the conventional parameters used to index a LOR for a circular tomograph, all the LORs passing through a point in the field of view (FOV) lie on a 2-D plane in the four-dimensional (4-D) data space. Thus, backprojection of all the LORs passing through a point in the FOV corresponds to integration of a 2-D plane through the 4-D "planogram." The key step is that the integration along a set of parallel 2-D planes through the planogram, that is, backprojection of a plane of points, can be replaced by a 2-D section through the origin of the 4-D Fourier transform of the data. Backprojection can be performed as a sequence of Fourier transform operations, for faster implementation. In addition, we derive the central-section theorem for planogram format data, and also derive a reconstruction filter for both backprojection-filtering and filtered-backprojection reconstruction algorithms. With software-based Fourier transform calculations we provide preliminary comparisons of planogram backprojection to standard 3-D backprojection and demonstrate a reduction in computation time by a factor of approximately 15.


Subject(s)
Algorithms , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Signal Processing, Computer-Assisted , Tomography, Emission-Computed/methods , Computer Simulation , Feasibility Studies , Fourier Analysis , Gamma Cameras , Image Enhancement/instrumentation , Image Interpretation, Computer-Assisted/instrumentation , Imaging, Three-Dimensional/instrumentation , Reproducibility of Results , Sensitivity and Specificity , Tomography, Emission-Computed/instrumentation , Transducers
15.
Biol Psychiatry ; 49(2): 81-96, 2001 Jan 15.
Article in English | MEDLINE | ID: mdl-11164755

ABSTRACT

BACKGROUND: Studies in experimental animals have implicated the mesolimbic dopaminergic projections into the ventral striatum in the neural processes underlying behavioral reinforcement and motivated behavior; however, understanding the relationship between subjective emotional experience and ventral striatal dopamine (DA) release has awaited human studies. Using positron emission tomography (PET), we correlated the change in endogenous dopamine concentrations following dextroamphetamine (AMPH) administration with the associated hedonic response in human subjects and compared the strength of this correlation across striatal subregions. METHODS: We obtained PET measures of [(11)C]raclopride specific binding to DA D2/D3 receptors before and after AMPH injection (0.3 mg/kg IV) in seven healthy subjects. The change in [(11)C]raclopride binding potential (DeltaBP) induced by AMPH pretreatment and the correlation between DeltaBP and the euphoric response to AMPH were compared between the anteroventral striatum (AVS; comprised of accumbens area, ventromedial caudate, and anteroventral putamen) and the dorsal caudate (DCA) using an MRI-based region of interest analysis of the PET data. RESULTS: The mean DeltaBP was greater in the AVS than in the DCA (p <.05). The AMPH-induced changes in euphoria analog scale scores correlated inversely with DeltaBP in the AVS (r = -.95; p <.001), but not in the DCA (r =.30, ns). Post hoc assessments showed that changes in tension-anxiety ratings correlated positively with DeltaBP in the AVS (r =.80; p [uncorrected] <.05) and that similar relationships may exist between DeltaBP and emotion ratings in the ventral putamen (as were found in the AVS). CONCLUSIONS: The preferential sensitivity of the ventral striatum to the DA releasing effects of AMPH previously demonstrated in experimental animals extends to humans. The magnitude of ventral striatal DA release correlates positively with the hedonic response to AMPH.


Subject(s)
Amphetamine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Dopamine/metabolism , Euphoria/drug effects , Neostriatum/metabolism , Adult , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Neostriatum/diagnostic imaging , Neostriatum/drug effects , Tomography, Emission-Computed
16.
Clin Nucl Med ; 25(11): 905-10, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11079589

ABSTRACT

PURPOSE: To compare combined whole-body PET and CT images of different cancers with PET images alone. MATERIALS AND METHODS: Thirty-two patients with known or possible cancers were examined using a combined positron emission tomographic (PET) and computed tomographic (CT) scanner. All data were acquired using this same combined scanner. After an injection of F-18 fluorodeoxyglucose (FDG), noncontrast helical CT imaging of the neck, chest, abdomen, or pelvis was performed. The spiral CT was followed by a PET scan covering the same axial extent as the CT. RESULTS: Coregistered PET-CT images identified and localized 55 lesions. In 10 patients (31%), areas with variable amounts of normal physiologic FDG uptake were distinguished from potential uptake of FDG in a nearby neoplastic lesion. Improved localization was achieved in 9 patients (for a total of 13 lesions, or 24%). CONCLUSION: Combined PET-CT images appear more effective than PET images alone to localize precisely neoplastic lesions and to distinguish normal variants from juxtaposed neoplastic lesions.


Subject(s)
Image Processing, Computer-Assisted , Neoplasms/diagnostic imaging , Tomography, Emission-Computed , Tomography, X-Ray Computed , Aged , Fluorodeoxyglucose F18 , Humans , Male , Middle Aged , Radiopharmaceuticals
17.
J Nucl Med ; 41(8): 1369-79, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10945530

ABSTRACT

UNLABELLED: The availability of accurately aligned, whole-body anatomical (CT) and functional (PET) images could have a significant impact on diagnosing and staging malignant disease and on identifying and localizing metastases. Computer algorithms to align CT and PET images acquired on different scanners are generally successful for the brain, whereas image alignment in other regions of the body is more problematic. METHODS: A combined PET/CT tomograph with the unique capability of acquiring accurately aligned functional and anatomical images for any part of the human body has been designed and built. The PET/CT scanner was developed as a combination of a Siemens Somatom AR.SP spiral CT and a partial-ring, rotating ECAT ART PET scanner. All components are mounted on a common rotational support within a single gantry. The PET and CT components can be operated either separately, or in combined mode. In combined mode, the CT images are used to correct the PET data for scatter and attenuation. Fully quantitative whole-body images are obtained for an axial extent of 100 cm in an imaging time of less than 1 h. When operated in PET mode alone, transmission scans are acquired with dual 137Cs sources. RESULTS: The scanner is fully operational and the combined device has been operated successfully in a clinical environment. Over 110 patients have been imaged, covering a range of different cancers, including lung, esophageal, head and neck, melanoma, lymphoma, pancreas, and renal cell. The aligned PET and CT images are used both for diagnosing and staging disease and for evaluating response to therapy. We report the first performance measurements from the scanner and present some illustrative clinical studies acquired in cancer patients. CONCLUSION: A combined PET and CT scanner is a practical and effective approach to acquiring co-registered anatomical and functional images in a single scanning session.


Subject(s)
Neoplasms/diagnostic imaging , Tomography, Emission-Computed/instrumentation , Tomography, X-Ray Computed/instrumentation , Adult , Aged , Carcinoma, Squamous Cell/diagnostic imaging , Carcinoma, Squamous Cell/pathology , Data Interpretation, Statistical , Duodenal Neoplasms/diagnostic imaging , Equipment Design , Female , Fluorodeoxyglucose F18 , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Male , Neoplasm Metastasis , Pancreatic Neoplasms/diagnostic imaging , Polyps/diagnostic imaging , Radiopharmaceuticals , Tomography, Emission-Computed/methods , Tomography, X-Ray Computed/methods
18.
Clin Positron Imaging ; 3(6): 223-230, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11378434

ABSTRACT

Purpose: In this work, we describe five oncology patients whose clinical management were uniquely benefited by a novel scanner that acquires positron emission tomography (PET) and x-ray computed tomography (CT) in the same imaging session.Procedures: Co-registered 2-[F(18)]-fluoro-2-deoxy-D-glucose (FDG)-PET and CT images were acquired using a combined PET/CT scanner. Pathology and clinical follow-up data were used to confirm PET/CT scan results.Results: The combined PET/CT scanner demonstrated the ability to distinguish malignant lesions from normal physiologic FDG uptake in the striated muscles of the head and neck as well as excretory and bowel activity in the abdomen and pelvis. Additionally, the technology positively affected patient management through localization for surgical and radiation therapy planning as well as assessment of tumor response.Conclusion: Our experience indicates that simultaneous acquisition of co-registered PET and CT images enabled physicians to more precisely discriminate between physiologic and malignant FDG uptake and more accurately localize lesions, improving the value of diagnostic PET in oncologic applications.

19.
Neuroimage ; 9(4): 430-8, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10191171

ABSTRACT

We present the results of a direct comparison of single-subject activation using identical tasks for both functional PET and fMRI whole-brain studies. We examined the most commonly employed methods for each modality. For fMRI this is the blood oxygenation level-dependent (BOLD) contrast method with echo-planar imaging. In PET single-subject activation studies are based on the development of high sensitivity 3D imaging of regional cerebral blood flow from multiple [15O]water injections. The identical activation paradigm of a visually cued sequential finger opposition was used for PET and fMRI. For both modalities the entire brain volume difference images were smoothed to the same final resolution and the peak t value within the primary sensory/motor (PSM) area was then identified. All contiguous voxels in the PSM above a predetermined threshold of statistical significance were determined. Finally, the difference-weighted centroid location was calculated for the PSM region for each modality. These studies showed a very similar pattern of activation, with the volume of activation greater in fMRI and higher levels of statistical significance. The centroids of activation, however, differed by 9 +/- 3 mm between the modalities, with the fMRI centroid location dorsal to that for PET. These results were stable across all processing options including differing levels of image smoothing and thresholds of statistical significance. These results are consistent with the hypothesis that draining veins contribute a substantial signal for fMRI activation studies and indicate caution for the interpretation of BOLD fMRI images with activation sites near draining veins.


Subject(s)
Brain Mapping/methods , Magnetic Resonance Imaging/methods , Oxygen/blood , Tomography, Emission-Computed/methods , Adult , Humans , Image Enhancement
20.
Neuropsychopharmacology ; 21(6): 694-709, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10633475

ABSTRACT

Regional differences in dextroamphetamine (AMPH)-induced dopamine (DA) release in the baboon striatum were assessed using positron emission tomographic (PET) measures of [11C]raclopride specific binding to DA D2/D3 receptors acquired before and after AMPH administration. The magnitude of the reduction in [11C]raclopride binding, following AMPH administration, was two-fold greater in the anteroventral striatum (comprised of ventral caudate, anteroventral putamen, and nucleus accumbens) than the dorsal striatum (dorsal caudate). A simulation study demonstrated that any potential biases due to resolution (partial volume) and alignment effects were significantly smaller than the magnitude of the observed results. These regional differences in the sensitivity of AMPH are compatible with microdialysis evidence in rats indicating that the magnitude of DA release in response to AMPH concentrations in the range tested is greater in ventral than dorsal striatal regions. Post hoc tests involving measures in other striatal regions showed that the baseline DA D2/D3 binding was highest and the correlation between AMPH dose and change in [11C]raclopride binding most significant in the putamen.


Subject(s)
Amphetamine/pharmacology , Corpus Striatum/metabolism , Dopamine/metabolism , Raclopride/pharmacokinetics , Animals , Carbon Radioisotopes/pharmacokinetics , Caudate Nucleus/metabolism , Corpus Striatum/diagnostic imaging , Corpus Striatum/drug effects , Female , Magnetic Resonance Imaging , Male , Nucleus Accumbens/metabolism , Papio , Putamen/metabolism , Rats , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3 , Tomography, Emission-Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...