Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Assoc Lab Anim Sci ; 57(5): 447-455, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30060780

ABSTRACT

Despite documented adverse effects, limits for rodent exposure to vibration in the laboratory animal facility have not been established. This study used female C57BL/6 mice to determine the frequencies of vibration at which mice were most sensitive to behavioral changes, the highest magnitude of vibration that would not cause behavioral changes, the behavioral changes that occur in response to vibration, and the extent to which mice habituate to vibration. Mice were exposed to frequencies of vibration between 20 and 190 Hz at accelerations of 0.05 to 1.0 m/s2. Behavioral responses were videorecorded and subsequently scored. Mice showed the most behavioral responses at 1.0 m/s2. At intermediate accelerations of 0.5 and 0.75 m/s2, behavioral responses were most prevalent at frequencies of 70 to 100 Hz. In contrast, at an acceleration of 0.05 m/s2, mice did not show any discernible behavioral response. Behavioral responses induced by the initiation of vibration were transient, generally lasting only 2 to 10 s. Behaviors in awake mice included abrupt freezing of motion, hunched posture, and surveying the cage environment. In mice that were asleep, responses consisted of lifting the head suddenly with or without prior shifting of body position. When exposed to multiple periods of vibration over a short time, responses seemed to decrease. In summary, mice were particularly sensitive to vibration between 70 to 100 Hz, did not respond to the slowest acceleration (0.05 m/s2), and exhibited transient responses at the initiation of vibration.


Subject(s)
Behavior, Animal , Vibration , Animals , Female , Male , Mice , Mice, Inbred C57BL , Vibration/adverse effects
2.
J Am Assoc Lab Anim Sci ; 50(5): 653-9, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22330711

ABSTRACT

The current study was performed to determine the vibration levels that were generated in cages on a ventilated rack by common construction equipment in frequency ranges likely to be perceived by humans, rats, and mice. Vibration generated by the ventilated rack blower caused small but significant increases in some of the abdominal, thoracic, and head resonance frequency ranges (RFR) and sensitivity frequency ranges (SFR) in which each species is most likely to be affected by and perceive vibration, respectively. Vibration caused by various items of construction equipment at 3 ft from the cage were evaluated relative to the RFR and SFR of humans, rats, and mice in 3 anatomic locations. In addition, the vibration levels in the RFR and SFR that resulted from the use of a large jackhammer and were measured at various locations and distances in the facility and evaluated in terms of humans, rats, and mice in 3 anatomic locations. Taken together, the data indicate that a given vibration source generates vibration in frequency ranges that are more likely to affect rats and mice as compared with humans.


Subject(s)
Animals, Laboratory , Construction Industry/instrumentation , Equipment and Supplies/adverse effects , Housing, Animal , Ventilation/instrumentation , Vibration , Animals , Fourier Analysis , Head/physiology , Humans , Mice , Rats , Species Specificity , Torso/physiology
3.
J Am Assoc Lab Anim Sci ; 49(5): 592-7, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20858361

ABSTRACT

The current study was performed to understand the level of sound produced by ventilated racks, animal transfer stations, and construction equipment that mice in ventilated cages hear relative to what humans would hear in the same environment. Although the ventilated rack and animal transfer station both produced sound pressure levels above the ambient level within the human hearing range, the sound pressure levels within the mouse hearing range did not increase above ambient noise from either noise source. When various types of construction equipment were used 3 ft from the ventilated rack, the sound pressure level within the mouse hearing range was increased but to a lesser degree for each implement than were the sound pressure levels within the human hearing range. At more distant locations within the animal facility, sound pressure levels from the large jackhammer within the mouse hearing range decreased much more rapidly than did those in the human hearing range, indicating that less of the sound is perceived by mice than by humans. The relatively high proportion of low-frequency sound produced by the shot blaster, used without the metal shot that it normally uses to clean concrete, increased the sound pressure level above the ambient level for humans but did not increase sound pressure levels above ambient noise for mice at locations greater than 3 ft from inside of the cage, where sound was measured. This study demonstrates that sound clearly audible to humans in the animal facility may be perceived to a lesser degree or not at all by mice, because of the frequency content of the sound.


Subject(s)
Animal Welfare/standards , Facility Design and Construction , Hearing/physiology , Mice/physiology , Noise , Air Pressure , Animals , Animals, Laboratory/physiology , Environment , Housing, Animal/standards , Humans , Laboratory Animal Science/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...