Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 58(32): 10971-10974, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31155825

ABSTRACT

A terminal iridium oxo complex with an open-shell (S=1) ground state was isolated upon hydrogen atom transfer (HAT) from the respective iridium(II) hydroxide. Electronic structure examinations support large spin delocalization to the oxygen atom. Selected oxo transfer reactions indicate the ambiphilic reactivity of the iridium oxo moiety. Calorimetric and computational examinations of the HAT revealed a bond dissociation free energy for the IrO-H bond that is sufficient for hydrogen atom abstraction towards C-H bonds and small contributions from entropy and spin-orbit coupling to the HAT thermochemistry.

2.
Chem Sci ; 9(18): 4325-4332, 2018 May 14.
Article in English | MEDLINE | ID: mdl-29780564

ABSTRACT

The iridium(iii/iv/v) imido redox series [Ir(NtBu){N(CHCHPtBu2)2}]0/+/2+ was synthesized and examined spectroscopically, magnetically, crystallographically and computationally. The monocationic iridium(iv) imide exhibits an electronic doublet ground state with considerable 'imidyl' character as a result of covalent Ir-NtBu bonding. Reduction gives the neutral imide [Ir(NtBu){N(CHCHPtBu2)2}] as the first example of an iridium complex with a triplet ground state. Its reactivity with respect to nitrene transfer to selected electrophiles (CO2) and nucleophiles (PMe3), respectively, is reported.

3.
Angew Chem Int Ed Engl ; 55(15): 4786-9, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-26948973

ABSTRACT

About 20% of the ammonia production is used as the chemical feedstock for nitrogen-containing chemicals. However, while synthetic nitrogen fixation at ambient conditions has had some groundbreaking contributions in recent years, progress for the direct conversion of N2 into organic products remains limited and catalytic reactions are unknown. Herein, the rhenium-mediated synthesis of acetonitrile using dinitrogen and ethyl triflate is presented. A synthetic cycle in three reaction steps with high individual isolated yields and recovery of the rhenium pincer starting complex is shown. The cycle comprises alkylation of a nitride that arises from N2 splitting and subsequent imido ligand centered oxidation to nitrile via a 1-azavinylidene (ketimido) intermediate. Different synthetic strategies for intra- and intermolecular imido ligand oxidation and associated metal reduction were evaluated that rely on simple proton, electron, and hydrogen-atom transfer steps.

4.
Inorg Chem ; 54(19): 9290-302, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26192601

ABSTRACT

The redox series [Ir(n)(NHx)(PNP)] (n = II-IV, x = 3-0; PNP = N(CHCHPtBu2)2) was examined with respect to electron, proton, and hydrogen atom transfer steps. The experimental and computational results suggest that the Ir(III) imido species [Ir(NH)(PNP)] is not stable but undergoes disproportionation to the respective Ir(II) amido and Ir(IV) nitrido species. N-H bond strengths are estimated upon reaction with hydrogen atom transfer reagents to rationalize this observation and are used to discuss the reactivity of these compounds toward E-H bond activation.

5.
Dalton Trans ; 43(11): 4506-13, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24399308

ABSTRACT

The iridium(II) complex [IrCl{N(CHCHPtBu2)2}] is reduced by KC8 to give the anionic iridium(I) pincer complex [IrCl{N(CHCHPtBu2)2}](-) which was isolated and fully characterized upon stabilization of the counter cation with crown ether as [K(15-cr-5)2][IrCl{N(CHCHPtBu2)2}]. This unprecedented anionic iridium(I) pincer complex completes the unusual, structurally characterized Ir(I)/Ir(II)/Ir(III) redox series [IrCl{N(CHCHPtBu2)2}](-/0/+), all in a square-planar coordination geometry, emphasizing the versatility of this PNP pincer ligand in stabilizing a broad range of oxidation states. The anionic chloro complex is a versatile source of the Ir(PNP) platform. Its reactivity was examined towards chloride ligand substitution against CO and N2, and oxidative addition of C-electrophiles, C-H bonds and dioxygen, allowing for the isolation of iridium(I) and iridium(III) (PNP) carbonyl, hydrocarbyl and peroxo complexes which were spectroscopically and crystallographically characterized.

SELECTION OF CITATIONS
SEARCH DETAIL
...