Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 861: 160557, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36574550

ABSTRACT

Most fish consumption advisories in the United States (U.S.) are issued for mercury and polychlorinated biphenyls (PCBs), and recently per- and polyfluoroalkyl substances (PFAS) have become a contaminant group that warrants fish consumption advice. An unequal probability survey design was developed to allow a comprehensive characterization of mercury, PCB, and PFAS contamination in fish from U.S. rivers on a national scale. During 2013-14 and 2018-19, fish fillet samples were collected from 353 and 290 river sites, respectively, selected randomly from the target population of rivers (≥5th order in size) in the conterminous U.S. These comprised nationally representative samples, with results extrapolated to chemical-specific sampled populations of 48,826-79,448 river kilometers (km) in 2013-14 and 66,142 river km in 2018-19. National distribution estimates were developed for total mercury, all 209 PCB congeners, and up to 33 PFAS (including perfluorooctane sulfonate or PFOS) in river fish. All fillet tissue samples contained detectable levels of mercury and PCBs. One or more PFAS were detected in 99.7 % and 95.2 % of the fillet samples from fish collected in 2013-14 and 2018-19, respectively. Fish tissue screening levels applied to national contaminant probability distributions allowed an estimation of the percentage of the sampled population of river lengths that contained fish with fillet concentrations above a level protective of human health. Fish tissue screening level exceedances for an average level of fish consumption ranged from 23.5 % to 26.0 % for mercury, 17.3 % to 51.6 % for PCBs, and 0.7 % to 9.1 % for PFOS.


Subject(s)
Fluorocarbons , Mercury , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Fishes , Mercury/analysis , Polychlorinated Biphenyls/analysis , United States , Water Pollutants, Chemical/analysis
2.
Environ Monit Assess ; 191(Suppl 1): 268, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31222669

ABSTRACT

The US Environmental Protection Agency (US EPA) initiated planning in 2007 and conducted field work in 2011 for the first National Wetland Condition Assessment (NWCA) as part of the National Aquatic Resource Surveys (NARS). It complements the US Fish and Wildlife Service (USFWS) National Wetland Status and Trends (S&T) program that estimates wetland acres nationally. The NWCA used a stratified, unequal probability survey design based on wetland information from S&T plots to select 900 sites for the conterminous 48 states. Based on site evaluation information, the NWCA estimates that there are 94.9 (± 6.20) million acres of wetlands in the NWCA target wetland population (reported in acres to be consistent with S&T). Not all of the estimated target population acres could be sampled due to accessibility and field issues. Based on the sites that could be sampled, the sampled population for the NWCA is estimated to be 62.2 (± 5.28) million acres of wetland area. Landowner denial for access was the main reason (24.7% ± 3.5%) for the sampled population being smaller than the target population, and physical inaccessibility was the second reason (6.8% ± 2.1%). The NWCA 2011 survey design was successful in enabling a national survey for wetland condition to be conducted and coordinated with the USFWS S&T survey of wetland extent. The NWCA 2016 survey design has been modified to address sample frame issues resulting from the difference in S&T focusing only on national estimates and NWCA focusing on national and regional estimates.


Subject(s)
Conservation of Natural Resources/methods , Environmental Monitoring/methods , Wetlands , Animals , Surveys and Questionnaires , United States , United States Environmental Protection Agency/organization & administration , United States Environmental Protection Agency/statistics & numerical data
3.
Environ Sci Technol ; 51(5): 3021-3031, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28230353

ABSTRACT

U.S. EPA conducted a national statistical survey of fish tissue contamination at 540 river sites (representing 82 954 river km) in 2008-2009, and analyzed samples for 50 persistent organic pollutants (POPs), including 21 PCB congeners, 8 PBDE congeners, and 21 organochlorine pesticides. The survey results were used to provide national estimates of contamination for these POPs. PCBs were the most abundant, being measured in 93.5% of samples. Summed concentrations of the 21 PCB congeners had a national weighted mean of 32.7 µg/kg and a maximum concentration of 857 µg/kg, and exceeded the human health cancer screening value of 12 µg/kg in 48% of the national sampled population of river km, and in 70% of the urban sampled population. PBDEs (92.0%), chlordane (88.5%) and DDT (98.7%) were also detected frequently, although at lower concentrations. Results were examined by subpopulations of rivers, including urban or nonurban and three defined ecoregions. PCBs, PBDEs, and DDT occur at significantly higher concentrations in fish from urban rivers versus nonurban; however, the distribution varied more among the ecoregions. Wildlife screening values previously published for bird and mammalian species were converted from whole fish to fillet screening values, and used to estimate risk for wildlife through fish consumption.


Subject(s)
Environmental Monitoring , Rivers , Animals , Fishes , Humans , Hydrocarbons, Chlorinated , Polychlorinated Biphenyls , Water Pollutants, Chemical
4.
Environ Toxicol Chem ; 35(4): 874-81, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26562077

ABSTRACT

To assess the potential exposure of aquatic ecosystems to active pharmaceutical ingredients, the authors conducted a national-scale, probability-based statistical survey of the occurrence of these compounds in surface waters of the United States. The survey included 182 sampling sites and targeted rivers with close proximity to urban areas. The 46 analytes reported represent many classes of active pharmaceutical ingredients (APIs), including antibiotics, diuretics, antihypertensives, anticonvulsants, and antidepressants. Of the 46 analytes, 37 were detected in at least 1 sampling location. Sulfamethoxazole (an antibiotic) was the most frequently detected compound, being measured in 141 of the 182 surface waters surveyed at concentrations ranging up to 570 ng/L. Ten of the compounds were detected in 20% or more of the sampling sites. Weighted means of the analytical measurements are used with the statistical survey design and analysis to provide national estimates of the extent of contamination for these APIs in the nation's urban rivers. Published 2015 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US Government work and as such, is in the public domain in the United States of America.


Subject(s)
Environmental Monitoring , Pharmaceutical Preparations/analysis , Rivers/chemistry , Surveys and Questionnaires , Water Pollutants, Chemical/analysis , Drinking Water/chemistry , Drug Resistance, Microbial , Ecosystem , Sulfamethoxazole/analysis , United States
5.
Sci Total Environ ; 499: 185-95, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25190044

ABSTRACT

Perfluorinated compounds (PFCs) have recently received scientific and regulatory attention due to their broad environmental distribution, persistence, bioaccumulative potential, and toxicity. Studies suggest that fish consumption may be a source of human exposure to perfluorooctane sulfonate (PFOS) or long-chain perfluorocarboxylic acids. Most PFC fish tissue literature focuses on marine fish and waters outside of the United States (U.S.). To broaden assessments in U.S. fish, a characterization of PFCs in freshwater fish was initiated on a national scale using an unequal probability design during the U.S. Environmental Protection Agency's (EPA's) 2008-2009 National Rivers and Streams Assessment (NRSA) and the Great Lakes Human Health Fish Tissue Study component of the 2010 EPA National Coastal Condition Assessment (NCCA/GL). Fish were collected from randomly selected locations--164 urban river sites and 157 nearshore Great Lake sites. The probability design allowed extrapolation to the sampled population of 17,059 km in urban rivers and a nearshore area of 11,091 km(2) in the Great Lakes. Fillets were analyzed for 13 PFCs using high-performance liquid chromatography tandem mass spectrometry. Results showed that PFOS dominated in frequency of occurrence, followed by three other longer-chain PFCs (perfluorodecanoic acid, perfluoroundecanoic acid, and perfluorododecanoic acid). Maximum PFOS concentrations were 127 and 80 ng/g in urban river samples and Great Lakes samples, respectively. The range of NRSA PFOS detections was similar to literature accounts from targeted riverine fish sampling. NCCA/GL PFOS levels were lower than those reported by other Great Lakes researchers, but generally higher than values in targeted inland lake studies. The probability design allowed development of cumulative distribution functions (CDFs) to quantify PFOS concentrations versus the sampled population, and the application of fish consumption advisory guidance to the CDFs resulted in an estimation of the proportion of urban rivers and the Great Lakes that exceed human health protection thresholds.


Subject(s)
Environmental Monitoring , Fishes/metabolism , Fluorocarbons/metabolism , Water Pollutants, Chemical/metabolism , Water Pollution, Chemical/statistics & numerical data , Animals , Lakes , Rivers/chemistry , United States
6.
Environ Monit Assess ; 98(1-3): 1-21, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15473526

ABSTRACT

One goal of regional-scale sample surveys is to estimate the status of a resource of interest from a statistically drawn representative sample of that resource. An expression of status is the frequency distribution of indicator scores capturing variability of attributes of interest. However, extraneous variability interferes with the status description by introducing bias into the frequency distributions. To examine this issue, we used data from a regional survey of lakes in the Northeast U.S. collected by the U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP). We employ a components of variance model to identify sources of extraneous variance pertinent to status descriptions of physical, chemical, and biological attributes of the population of lakes in the NE. We summarize the relative magnitude of four components of variance (lake-to-lake, year, interaction, and residual) for each indicator and illustrate how extraneous variance biases the status descriptions. We describe a procedure that removes this bias from the status descriptions to produce unbiased estimates and introduce a novel method for estimating the 'cost' of removing the bias (expressed as either increased sampling uncertainty or additional samples needed to achieve the target precision in the absence of bias). We compare the relative magnitude of the four variance components across the array of indicators, finding in general that conservative chemical indicators are least affected by extraneous variance, followed by some nonconservative indicators, with nutrient indicators most affected by extraneous variance. Intermediate were trophic condition indicators (including sediment diatoms), fish species richness and individuals indicators, and zooplankton taxa richness and individuals indicators. We found no clear patterns in the relative magnitude of variance components as a function of several methods of aggregating fish and zooplankton indicators (e.g., level of taxonomy, or species richness vs. numbers of individuals).


Subject(s)
Biodiversity , Environmental Monitoring/statistics & numerical data , Fresh Water , Analysis of Variance , Animals , Crustacea/classification , Fishes/classification , Fresh Water/analysis , Fresh Water/chemistry , Linear Models , New England , Population Dynamics , Zooplankton/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...